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SUMMARY

A general algorithmic framework is established in this paper for numerical simulations of three-dimensional
fluid–particle interaction problems with a large number of moving particles in turbulent flows using a
combined lattice Boltzmann method (LBM) and discrete element method (DEM). In this approach, the
fluid field is solved by the extended three-dimensional LBM with the incorporation of the Smagorinsky
turbulence model, while particle interactions are modelled by the DEM. The hydrodynamic interactions
between fluid and particles are realized through the extension of an existing two-dimensional fluid–
particle hydrodynamic interaction scheme. The main computational aspects comprise the lattice Boltzmann
formulation for the solution of fluid flows, the incorporation of a large eddy simulation-based turbulence
model within the framework of the three-dimensional LBM for turbulent flows, the moving boundary
condition for hydrodynamic interactions between fluid and moving particles, and the discrete element
modelling of particle-particle interactions. To assess the solution accuracy of the proposed approach,
a much simplified laboratory model of vacuum dredging systems for mineral recovery is employed.
The numerical results are compared with the experimental data available. It shows that the overall
correspondence between numerical results and experimental measurements is good and thus indicates, to
a certain extent, the solution accuracy of the proposed methodology. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Fluid–particle interaction problems can be found in many scientific and engineering applications,
such as particle suspensions, fluidized beds, lubricated transport, sedimentation, fluvial erosion, and
geo-mechanical systems including liquefaction and piping. The fundamental physical phenomena
involved in these problems are generally not well understood and are often described in an empirical
fashion, mainly due to the intricate complexity of the fluid–particle interactions exhibited. The
motion of the particles is driven collectively by gravity and the hydrodynamic forces exerted by
the fluid, and may also be altered by the interaction between particles. On the other hand, the fluid
flow pattern can be greatly affected by the presence of the particles, and is often of a turbulent
nature.

The numerical treatment of fluid–particle interaction problems may crucially depend on the size
of the particles in relation to the domain/mesh size. For small particle/mesh size ratios, as occur,
for example, in fluidised bed applications in which the particle–fluid hydrodynamics is described
by the Navier–Stokes equations in the averaged sense based on the local porosity of the fluid cells,
while empirical-based drag forces are applied to particles to determine the motion of the particles
[1]. However, this solution strategy becomes less accurate when the particle sizes are larger than
the mesh size because not sufficient resolution is provided for the fluid field. Thus alternative
solution procedures must be sought.

Substantial effort has been invested over recent decades in the development of various finite
element-based techniques to model fluid–particle interactions where sufficient resolution of the
particle domain is required, see for instance [2]. Although the methodology can be employed to
simulate problems involving many particles, it may not be computationally effective when a large
number of particles are present due to intensive computations involved in the continuous generation
of new adapted meshes to circumvent severe mesh distortion, particularly in the three-dimensional
cases.

In recent years, the lattice Boltzmann method (LBM) has attracted considerable research attention
and has emerged as an alternative solution technique to the conventional computational fluid
dynamics (CFD) methods employing Navier–Stokes equations. It offers various advantages over
the Navier–Stokes equations, including high space–time resolution, full scalability on parallel
computers, as well as efficient and robust implementation in complex geometries [3]. Another
distinct feature of the LBM over the finite volume method and finite element method is the use of
an Eulerian grid to represent the flow field. For these reasons, the LBM is ideal for simulating fluid
flows in complex geometries, such as the fluid–particle interaction problems considered. Since
Ladd’s early work [4], the LBM has been widely employed to model fluid–particle interactions,
see for instance [5–8]. Furthermore, employing the discrete element method (DEM) to account
for particle–particle interactions gives rise to a combined LBM–DEM solution procedure. The
explicit time stepping scheme of both the LBM and the DEM makes this combined strategy a
competitive numerical tool for the simulation of fluid–particle systems, having potential to be a
powerful predictive tool for gaining fundamental insight into many poorly understood physical
phenomena.

While the LBM has been well established for laminar flows, turbulence modelling within
the framework of the LBM remains a challenge. Recently, limited attempts have been made to
incorporate some existing turbulence models into the LBM. The large eddy simulation (LES)
procedure with the Smagorinsky sub-grid model [9] is the simplest to apply. The approach assumes
that the Reynolds stress tensor is dependent only on the local strain rate. This model is very
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convenient in numerical simulations as it leaves the Navier–Stokes equation invariant except for a
renormalized turbulent viscosity [10].

In our previous work [11, 12], the coupled LBM–DEM strategy together with the incorporation
of the LES with a Smagorinsky sub-grid model has been successfully implemented in the simulation
of two-dimensional fluid–particle interaction problems in turbulent flows with regular and irregular-
shaped particles.

The objective of this work is to extend the methodologies to three-dimensional situations so that
realistic fluid–particle interaction problems with a large number of moving particles in turbulent
flows can be effectively simulated. In this coupled numerical framework, the (turbulent) fluid field
is solved by the extended LBM with the incorporation of the Smagorinsky turbulence approach,
while the particle interaction is modelled by the DEM. In particular, the hydrodynamic interactions
between fluid and particles are realized through the three-dimensional generalization of the scheme
proposed by Noble and Torczynski [13]. Since both the LBM and DEM are well established, it
is crucial to investigate the validity of the three-dimensional extension of Noble and Torczynski’s
hydrodynamic scheme. Although the three-dimensional scheme has been validated very recently
by Strack and Cook [14] for a number of problems involving spheres embedded in laminar fluid
flows, no validation has been conducted for problems involving turbulent flows, which is essential
for simulating practical particle transport applications. In the present work, in view of the inherent
difficulties associated with the conduction of such a validation, a much simplified sample vacuum
dredging system for mineral recovery is simulated by the proposed approach, and then the simulated
results are compared with the corresponding experimental data available in order to assess, to
a certain extent, the accuracy of the whole numerical strategy in general and the hydrodynamic
scheme in particular.

The remainder of the paper is arranged as follows. A brief introduction of the three-dimensional
LBM and its incorporation with the LES-based Smagorinsky model are given first, followed by a
detailed discussion of the modelling of the fluid–particle and particle–particle interactions. Then
an assessment is performed where the results of the numerical simulation of a vacuum dredging
system are compared with those obtained experimentally.

2. THE LBM

In the conventional CFD methods, the macroscopic variables of the fluid field, such as velocity v
and pressure p, are obtained by solving the Navier–Stokes equations in space and time. Instead, the
LBM does not solve the Navier–Stokes equations directly, but is based on the kinetic gas theory,
which simulates fluid flows by tracking the evolution of the single fluid ‘particle’ distribution. Once
the distribution function is solved, macroscopic variables of the fluid field can be conveniently
calculated from its first two moments.

In the LBM, the problem domain is divided into regular lattice nodes. The fluid is modelled as
a group of fluid particles that are allowed to move between the adjacent lattice nodes or stay at
rest. During each discrete time step of the simulation, fluid particles move to their nearest lattice
nodes along their directions of motion, where they ‘collide’ with other fluid particles that arrive
at the same node. The outcome of the collision is determined by solving the kinetic (Boltzmann)
equation for the new distribution function at that node and the fluid particle distribution function
is updated.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:229–245
DOI: 10.1002/nme



232 Y. T. FENG, K. HAN AND D. R. J. OWEN

Figure 1. D3Q15 model.

As the relevant literature is very rich (see [15] for a comprehensive review), only essential
aspects of the method for the three-dimensional cases are outlined below.

2.1. D3Q15 model

The lattice Boltzmann equation with single-relaxation-time approximation introduced by Bhatnagar
et al. [16] for the collision operator is expressed as

fi (x+ei� t, t+� t)− fi (x, t)=−1

�
[ fi (x, t)− f eqi (x, t)] (1)

where fi is the density distribution function with discrete velocity ei along the i th direction; f eqi
is the equilibrium distribution function; and � is the single relaxation time, which controls the rate
of approach to equilibrium. The left-hand side of Equation (1) denotes a streaming process for
fluid particles, while the right-hand side models the collisions through relaxation.

There are a number of different models available in three-dimensional simulations. The widely
adopted D3Q15 model, which is adopted here, uses a cubic lattice with 15 discrete velocity
directions. The fluid particles at each lattice node move to their 14 neighbouring nodes with discrete
velocities ei , (i=1, . . . ,14), as shown in Figure 1. A proportion of the particles remain at the node,
which is equivalent to moving with a zero velocity e0. With reference to the numbering system
in Figure 1, the 15 discrete velocity vectors correspond to the column vectors of the following
matrix:

E=
⎡
⎢⎣
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 −1 1 −1 −1 1 −1 1

0 0 0 0 0 1 −1 1 −1 −1 1 1 −1 −1 1

⎤
⎥⎦ (2)

The equilibrium distribution functions f eqi depend only on the local density and velocity and
are defined in the D3Q15 model as

f eqi =wi �

[
1+ 3

c2
ei ·v+ 9

2c2
(ei ·v)2− 3

2c4
v ·v

]
(3)

in which wi are the weighting factors defined as

w0= 2
9 , w1,...,6= 1

9 , w7,...,14= 1
72 (4)
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and c is termed as the lattice speed defined as

c=h/� t

with h the lattice spacing and � t the discrete time step.
The computation at each time step comprises two operations: collision and streaming. The first

operation simulates fluid particle collisions, which cause the fluid particles at each lattice node
to scatter in different directions. The collision rules are chosen to leave the sum of the density
distribution functions unchanged, or such that no fluid particle is lost. The rules are also chosen to
conserve the total energy and momentum at each lattice node [15]. This computation is completely
local. The second operation, streaming, is to advance the particles to the next lattice node along
their directions of motion. The streaming operation takes little computational effort. These features
make the LBM highly efficient, simple to implement and natural to parallelize.

The macroscopic fluid variables, density �, and velocity v can be recovered from the distribution
functions as

�=
14∑
i=0

fi , �v=
14∑
i=1

fi ei (5)

In the conventional CFD methods, the pressure is typically obtained by solving the Poisson or
Poisson-like equation derived from the incompressible Navier–Stokes equations that can be time
consuming [17]. In the LBM, the pressure is obtained through an extremely simple equation of
state,

p=c2s� (6)

where cs is termed the fluid speed of sound and is related to the lattice speed c by

cs=c/
√
3 (7)

This is an appealing feature of the LBM.
The kinematic viscosity, �, of the fluid is implicitly determined by the model parameters h,� t ,

and � as

�= 1

3

(
�− 1

2

)
h2

� t
= 1

3

(
�− 1

2

)
ch (8)

which indicates that the selection of these three parameters has to be related to each other to
achieve a correct fluid viscosity.

As indicated in [12], the lattice Boltzmann equation (1) recovers the incompressible Navier–
Stokes equations to the second order in both space and time [15], subject to the condition

Ma= vmax

c
�1 (9)

where Ma is called the ‘computational’ Mach number and vmax is the maximum simulated velocity
in the flow. That is, to achieve a reasonable solution accuracy, all the model parameters should
be chosen in such a way that the resulting lattice speed c is sufficiently larger than the computed
maximum fluid velocity. This issue has been discussed in detail in [12].
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2.2. Turbulence modelling

While the LBM has been proven to be an efficient simulation tool for a variety of complex flow
problems, the modelling of turbulent flows within the framework of the LBM is not a well investi-
gated topic and only very limited work has been reported. However, many engineering applications
are often associated with high Reynolds numbers that are turbulent in nature, particularly when
particles are present. Therefore, the incorporation of a turbulence model into the LBM is essential
for simulating realistic fluid–particle interaction problems.

As one of the popular turbulence modelling approaches, LES aims at directly solving large
spatial-scale turbulent eddies, which carry most of the flow’s energy, while using a sub-grid model
to model the smaller-scale eddies. The separation of these scales is achieved through filtering the
Navier–Stokes equations, from which the solutions to the resolved scales are directly obtained,
while unresolved scales are modelled by sub-grid models. In this work, the widely used one-
parameter Smagorinsky sub-grid model [9] is employed as the sub-grid model that assumes that
the Reynolds stress tensor is dependent only on the local strain rate.

This part of the work is a straightforward extension of our previous work in two dimensions
[12]. The essential steps are outlined here.

To incorporate the LES in the LBM, Equation (1) has to be modified to include the eddy
viscocity, which is realized by the approach described in [18]. The filtered form of the lattice
Boltzman equation [18] is expressed as

f̃i (x+ei� t, t+� t)= f̃i (x, t)− 1

�∗
[ f̃i (x, t)− f̃ eqi (x, t)] (10)

where f̃i and f̃ eqi are, respectively, the distribution function and the equilibrium distribution
function at the resolved scale. The effect of the unresolved scale motion is modelled through an
effective collision relaxation time scale �t . Thus, in Equation (10) the total relaxation time should
be changed to

�∗ =�+�t

where � and �t are, respectively, the relaxation times corresponding to the true fluid (molecular)
viscosity � and the turbulence viscosity �∗ defined by a sub-grid turbulence model. Accordingly,
�∗ is given by

�∗ = �+�t = 1
3

(
�∗− 1

2

)
c2� t= 1

3

(
�+�t − 1

2

)
c2� t

�t = 1
3�t c

2� t

By employing the Smagorinsky model, the turbulence viscosity �t is explicitly calculated from
the filtered strain rate tensor S̃i j =(� j ũi +�i ũ j )/2 and a filter length scale (the same as the lattice
spacing h)

�t =(Sc h)2 Ŝ (11)

where Sc is the Smagorinsky constant; and Ŝ the characteristic value of the filtered strain rate
tensor S̃

Ŝ=
√∑

i, j
S̃i j S̃i j
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The above model is computationally very effective as S̃ can be obtained directly from the second-
order moments, Q̃, of the non-equilibrium distribution function

S̃= Q̃

2�c2s �∗
(12)

in which Q̃ can be simply computed by the filtered density functions at the lattice nodes

Q̃i j =
14∑
k=1

eki ek j ( f̃k− f̃ eqk ) (13)

where eki is the kth component of the lattice velocity ei . Consequently

Ŝ= Q̂

2�c2s �∗
(14)

with Q̂ the filtered mean momentum flux computed from Q̃

Q̂=
√
2
∑
i, j

Q̃i j Q̃i j (15)

This approach is simple to implement as it leaves the original lattice Boltzman equation unchanged
except for the incorporation of the turbulent viscosity �∗.

3. FLUID–PARTICLE AND PARTICLE–PARTICLE INTERACTIONS

3.1. Hydrodynamic forces for fluid–particle interactions

For the fluid–particle interaction problems concerned, modelling interactions between fluid and
particles requires a physically correct ‘non-slip’ condition imposed on their interfaces. In other
words, the fluid adjacent to the particle surface should have identical velocity as that of the particle
surface. For a stationary particle, this ‘non-slip’ velocity condition can be easily achieved at the
fluid–particle interface by the well-known bounce-back scheme. Assume that a particle is mapped
onto the lattice by a set of lattice nodes (note that this is not a trivial issue numerically, but will
not be discussed in depth here). The nodes inside and outside the solid region are, respectively,
termed as solid nodes and fluid nodes. If i is a link (or direction) between a fluid node and a solid
node, the bounce-back rule states that the incoming fluid particle from the fluid node is reflected
back to the node it comes from, i.e.

f−i (x, t+1)= fi (x, t+) (16)

where fi (x, t+) denotes the post collision distribution at the boundary node x and −i is the opposite
direction of i . This simple rule ensures that no tangential velocity exists along the fluid–solid
interface; therefore, a ‘non-slip’ condition is imposed. Note that the particle boundary is assumed
to be situated halfway between the fluid and solid node so as to achieve a second-order accuracy;
otherwise, the accuracy is of first order.

It is, however, not trivial to model the interaction between the fluid and a moving particle. Ladd
[4] proposed a modification to the original bounce-back rule so that the movement of a particle can
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be accommodated. This approach provides a relationship of the exchange of momentum between
the fluid and the solid boundary nodes. It also assumes that the fluid fills the entire volume of
the particle, or in other words, the particle is modelled as a ‘shell’ filled with fluid. As a result,
both solid and fluid nodes on either side of the boundary surface are treated in an identical
fashion.

For a given boundary link i , the modified ‘non-slip’ rule is given by

f−i (x, t+1)= fi (x, t+)−�i ei ·vb (�i =6wi�/c2) (17)

where vb is the velocity of the middle point of the boundary link i and is computed by

vb=vc+x×(x+ei� t/2−xc)

in which vc and x are, respectively, the translational and angular velocities of the particle; xc and
x+ei� t/2 are, respectively, the particle centre and mid-boundary link coordinates.

The hydrodynamic force and torque exerted on the particle at the boundary node are computed as

Fi = 2ei [ fi (x, t+)−�i ei ·vb]/� t (18)

Ti = rc×Fi (rc=x+ei� t/2−xc) (19)

Then the total hydrodynamic forces and torque exerted on the particle are computed by summing
up the forces and torques from all the related boundary links as

F=∑
i
Fi , T=∑

i
Ti (20)

Some other issues relevant to the modified ‘non-slip’ method have been addressed in [12].
In particular, the oscillation of the computed hydrodynamic forces on the particles promotes the
choice of an alternative scheme as outlined below.

Noble and Torczynski [13] develop a moving boundary method for modelling moving obstacles
in fluid flows in two dimensions. In this approach, the collision operator in the conventional LBM
is modified so that it shifts smoothly between hydrodynamic at nodes occupied solely by fluid and
rigid body motion at nodes occupied solely by particles. The modified collision operator make use
of the fluid and solid volume fractions to weigh the corresponding portions of the collision term
for nodes with both phases present.

At a lattice node, let h×h×h be a (cubic) nodal cell around the node and � be the volume
fraction of the nodal cell covered by the particle. The lattice Boltzman equation for those lattice
nodes (fully or partially) covered by a solid particle is modified to enforce the ‘non-slip’ velocity
condition as

fi (x+ei� t, t+� t)= fi (x, t)− 1

�
(1−�)[ fi (x, t)− f eqi ]+� f mi (21)

where � is a weighting function of the local fluid/solid ratio � and f mi is an additional term
that accounts for the bounce back of the non-equilibrium part of the distribution function. Three
different forms of � and two possible formulations for f mi have been investigated in [13]. Their
difference to the final results is generally not significant, which is also confirmed by our numerical
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tests for both two-dimensional and three-dimensional analysis. The following forms of � and f mi
are thus adopted in the this work:

� = �(�−0.5)

(1−�)+(�−0.5)

f mi = f−i (x, t)− fi (x, t)+ f eqi (�,vb)− f eq−i (�,v)
(22)

The total hydrodynamic forces and torque exerted on a particle over n particle-covered nodes are
summed up as

F f = ch2
[∑

n

(
�n

∑
i
f mi ei

)]
(23)

T f = ch2
[∑

n
(xn−xc)×

(
�n

∑
i
f mi ei

)]
(24)

where xn is the coordinate of the lattice node n.
This approach has been verified for a series of two-dimensional problems including cylindrical

Couette flow, sedimentation of circular and elliptical particles, and the drafting, kissing, tumbling
phenomenon [19]. Recently, the method has also been verified for several problems in three
dimensions such as a moving sphere in creeping Poiseuille flow and a settling sphere in a column
of fluid [14]. These validations demonstrate that the moving boundary condition described above
is capable of accurately computing the forces and torques acting on solid particles.

3.2. Contact forces for particle–particle interactions

In many lattice Boltzmann simulations of particle–fluid problems, the inter-particle interaction is
either ignored or treated in a simple manner. However, many practical applications require accurate
resolutions of the particle contact. A rational choice is to employ the DEM to account for this
interaction.

The DEM has become a promising numerical tool capable of simulating problems of a discrete
or discontinuous nature. It was originated in geotechnical and granular flow applications in the
70s by Cundall and Strack [20]. In its framework, a discrete system is considered as an assembly
of individual discrete objects that are treated as rigid and represented by discrete elements as
simple geometric entities. The dynamic response of discrete elements depends on the interaction
forces between them, which can be short-ranged, such as mechanical contact, and/or medium-
ranged, such as attraction forces in liquid bridges, and obey Newton’s second law of motion. By
tracking the motion of individual discrete objects, the dynamic behaviour of a discrete system can
be simulated. In addition to simple geometrical entities such as spheres, more complex-shaped
elements such as polyhedra and clusters of spheres can also be used to represent realistic objects
encountered in practical applications. The dynamic equations of the discrete system are normally
solved numerically by the central difference-based explicit integration scheme at discrete time
instants.

The solution procedure involved in the DEM at each time step consists of (1) (global) spatial
search, (2) (local) interaction resolution, (3) interaction force computation, and (4) solutions of
element positions and velocities. In the global search phase, a list of neighbouring elements that
may potentially interact with each discrete element is determined. Over the last decade, significant
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progress has been made in the development of highly effective search algorithms capable of
dealing with a large numbers of discrete objects (several millions, for instance). See [21] for a
comprehensive review and performance comparison for a number of commonly used tree-based and
cell-based search algorithms. In the local resolution phase, the pairs in potential contact identified
from the global search are subjected to kinematic resolutions based on their actual geometric
shapes. If the pairs are in contact, interaction forces need to be computed according to certain
constitutive relationship or interaction law. This is the third phase. When all the forces acting on
the discrete elements are computed, the displacements, velocities, and accelerations of the global
system at the time instant are updated in the solution phase using the central difference time
stepping scheme. These computations are repeated for every time step throughout the simulation.
However, the global search is performed when necessary.

Note that in the DEM, the contact between discrete objects is simulated along their boundaries
by appropriate penalty-based interaction laws, which essentially govern the relation of the distance
of the relative approach or overlap, and the generated repulsive force between the contacting pairs.
Discrete objects are considered to be rigid, but a certain small overlap between discrete objects
is allowed, i.e. a ‘soft’ model [22] is adopted. This ‘soft’ model may be justified by the fact that
discrete objects are physically deformable and thus the allowed overlap may partially offset the
error introduced by the assumed rigidity of the discrete objects. Furthermore, it is assumed that
the overlap is sufficiently small for small deformation theory to be applicable when describing the
deformation of the contacting region of discrete objects. If � denotes the maximum contact overlap
(or penetration), this small contact deformation assumption requires that ��2R, where R is the
radius of a sphere or the characteristic length of an irregular-shaped particle. The interaction laws
should correctly represent the physical relationship between the interaction forces and the contact
overlap or characteristics.

For the current problem, each particle is represented by a spherical discrete element. A linear
or Hertz contact model is employed for the normal contact between a contact pair, while the
frictional forces are computed with the modified Coulomb friction law, although it is considered
not important for the problem concerned. A detailed discussion of the contact interaction laws can
be found in [23]. Note that the lubrication pressure developed between two approaching particles
is not considered here, which may be important for some applications.

3.3. LBM and DEM coupling

Fluid and particle coupling at each time step is realized by first computing the fluid solution and
then updating the particle positions through the integration of the equations of motion given by

ma+cv = Fc+F f +mg

J	̈ = Tc+T f

(25)

where m and J are, respectively, the matrices of the mass and the moment of inertia of the particle,
	̈ the angular acceleration vector, g the gravitational acceleration if considered, F f and T f are,
respectively, the hydrodynamic force and torque vectors, Fc and Tc denote the contact force and
torque vectors from particle–particle and particle–boundary walls, c is a damping matrix, and the
term cv represents a viscous force vector that accounts for the effect of all possible dissipation
forces in the system. The static buoyancy force of the fluid is taken into account by reducing the
gravitational acceleration to (1−�/�s)g, where �s is the density of a particle.
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The time step used in the time integration of (25) should be appropriately selected to satisfy
the solution accuracy requirement and more importantly to ensure numerical stability due to the
explicit nature of the central difference algorithm. For a local linear normal contact model

Fc=kn� (26)

where kn is the normal stiffness and � the penetration; the critical time step for the central difference
algorithm is given by

� tcr=2(
√
1+
2−
)/� (27)

where �=√
kn/m is the local contact natural frequency and 
 is the critical damping ratio. As

pointed out [24], this critical time value may be too large for impact systems. Thus, the actual
time step used for the integration of Equation (25) is taken as

� tD=�� tcr (28)

where the time step factor � is normally chosen to be around 0.1.
When the dynamic equation (25) governing the evolution of the particle–fluid system is solved by

the explicit central difference scheme, there are two computational issues that are worth mentioning
below, although the same issues have been discussed in [12].

(1) Sub-cycling time integration: There exist two different time steps in the combined LBM–
DEM solution procedure: � t for the fluid flow and � tD for the discrete particles. At least for the
problem concerned, � tD is smaller than � t . One solution would be to set � t=� tD. However, it
is not a viable option since � tD is dynamically changing and � t is implicitly determined by the
grid size �x , the relaxation time �, and the viscosity of the fluid. A more feasible option is to
reduce � tD to a new � ts so that the ratio between � t and � ts is an integer ns:

� ts= � t

ns
(ns=�� t/� tD�+1) (29)

where �·� denotes an integer round-off operator. This essentially leads to a so-called sub-cycling
time integration scheme: in one step of the LB fluid computation, ns sub-steps of integration are
performed for the discrete part using the time step � ts; while the hydrodynamic forces F f and
T f are kept unchanged during the sub-cycling.

(2) The dynamic equations in the lattice coordinate system: Since all the lattice Boltzman-related
equations are implemented in the lattice coordinate system in this work, the dynamic equation
(25) should be implemented in the same consistent manner. Equation (25) in the lattice coordinate
system takes the form of

m̄ā+ c̄d v̄= F̄c+F̄ f +m̄ḡ (30)

where

m̄ = m/�sh
3, v̄=v/c

ā = a� t/c, ḡ=g� t/c

c̄d = chcd , F̄ f =F f /(�0c
2h2)
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Table I. Particle size distribution.

Particle size Distribution Cumulative
(mm) (%) (%)

12 10 100
10 40 90
8 40 50
6 10 10

and F̄c is the scaled contact force. For a linear normal contact model,

F̄c= k̄n �̄, k̄n =kn/c
2h

Then the scaled natural frequency �̄, the critical time step �̄ tcr, and the time step �̄ t s are
respectively taken as:

�̄=�� t, �̄ tcr=� tcr/� t, �̄ t s=1/ns

4. EXPERIMENTAL COMPARISON

To assess the solution accuracy and performance of the combined three-dimensional LBM–DEM
approach proposed in the preceding sections, a much simplified laboratory testing of vacuum
dredging systems for mineral recovery is conducted elsewhere. Experimental results obtained can
be utilized to compare with the numerical simulation and thus provide, to a certain extent, an
indication of the solution accuracy of the combined LBM–DEM with the Smagorinsky turbulent
model for fluid particle problems.

A vacuum dredging system for mineral recovery is of practical importance in the mining industry.
This recovery operation employs a suction process to extract rock fragments. It consists of a rigid
pipe connected to a slurry transport system, which is typically powered by a gravel pump, although
other types of pumping systems can be used. The gravel is transported to the pipe entrance via
hydraulic entrainment. Effective computer modelling techniques are sought to assist and optimize
the design of this operation.

4.1. Experimental setup

The experimental setup for a simplified system consists of a Perspex suction pipe connected to a
positive displacement pump via a flexible pipe, with the inlet of the suction pipe being held at a
fixed distance from the gravel surface. The distance above the gravel surface will be referred to
as the stand-off distance (SOD). The pump is started once the SOD has been fixed, and the test is
considered complete when gravel entrainment has stopped.

The suction pipe has an internal diameter of 101mm, a tube thickness of 16mm, and is made
of Perspex. The gravel is initially confined to a cylindrical region called the gravel bed of 300mm
in diameter and 70mm in depth. The gravel particles are made of quartz with a density of
�=2650kg/m3, and are assumed to be spherical with diameter in the range of 6–12mm. Table I
lists the particle size distribution. The particles are randomly packed, having an initial porosity of
approximately 50%.
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Figure 2. The front view of the problem geometry.

The flow inside the suction pipe is expected to be fully turbulent. The fluid is water. Both water
and gravel particles are initially at rest.

During the test, video footage is captured using a high-speed digital camera. Image processing
is used to provide an indication of the gravel velocity history during the test. The final excavation
profile and gravel volume removed during the test are also recorded.

4.2. Computational setup

From the experimental results, it is clear that particles are only entrained in a limited region around
the pipe entrance. It is therefore reasonable to assume that the gravel particles are restricted to
a cylindrical region that is larger than the entrainment zone, and that the effect of the far field
particles can be ignored so that a less number of discrete particles need to be modelled. The front
view of the idealized problem geometry is shown in Figure 2.

The combined three-dimensional LBM–DEM procedure, described in the previous section, is
then implemented for stand-off distances SOD=0 and 30mm, respectively.

A total of 5086 spheres with the same size distribution as that of the experiment (as shown in
Table I) are randomly positioned at gravel bed, using the packing algorithm developed in [25].
Full gravity (g=9.81m/s2) is applied. The moving boundary method of Noble and Torczynski
[13] is employed to compute the fluid–particle interaction forces. Different versions of the method
are compared and no significant difference is observed. The linear sphere/sphere and sphere/facet
contact models are used to model the normal contact between the particles and between particles and
boundary walls, while the frictional contact is neglected. The LES-based Smagorinsky turbulence
model is adopted with the Smagorinsky constant Sc=0.1. The following parameters are chosen:
particle density �s=2650kg/m3, normal contact stiffness kn =5×108N/m, contact damping ratio

=0.5, and time step factor �=0.1, which gives a time step of � tD=1.16×10−5 for the DEM
simulation of the particles. The fluid domain is divided into regular lattice with lattice spacing
h=2.5mm. The fluid properties are those of water at room temperature, i.e. density �=1000kg/m3

and kinematic viscosity �=10−6m2/s. A complete simulation is achieved with �=0.50002. This
gives a time step � t=4.17×10−5 s and thus the corresponding lattice speed c=60m/s.
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The boundary conditions are set as follows. Except for the bottom of the gravel bed, which is a
solid stationary wall, the others are flow boundaries. A constant pressure boundary condition with
�in=� is imposed at the inlet walls, and a smaller pressure with �out=0.975� is applied to the
outlet of the pipe. The flow is therefore driven by the pressure difference between the inlet and
outlet.

4.3. Comparison of computational and experimental results

Figure 3 shows the images of the gravel motion at the start, during, and towards the end of the
experiment and simulation, respectively.

Of greater importance are the flow velocity at the pipe outlet, the total weight of the gravel
particles removed, and the excavation profile. The calculated values are compared with those
observed from experimentation. For SOD=0, the predicted average velocity on the exit plane of
the suction pipe is approximately 0.99m/s, which agrees well with the measured value (1.05m/s).
A volume of 678341mm3 of gravel is removed in the test, which weighs approximately 1.09 kg
(assuming a bulk density of 1600kg/m3), while 1110 particles, weighting 1.22 kg in total, are
excavated in the simulation.

The final excavation profiles, measured, respectively, from the experimentation and simulation,
at the gravel bed are illustrated in Figure 4. The excavation profile from the experiment is obtained
from a randomly selected cross section of the bead, while the profile for the simulation is obtained
by a radial mapping of all the particles onto the cross section and then rotating about the central
axis to create an axisymmetrical profile to facilitate the comparison with the experiment. Similarity
of the two profiles is clearly evident although no quantitative comparison is made. Note that the
detail of the pebble bed structure is not important for the comparison purpose.

The simulated maximum fluid velocity is vmax=1.36m/s at the pipe outlet (with the character-
istic length L=0.101m). Thus, the maximum Mach number and Reynolds number are, therefore,
estimated as

Ma = vmax

c
=0.0226

Re = vmaxL

�
=137360

The Mach number indicates that the results obtained are reasonably accurate. See [12] for the
detail.

For SOD=30mm, none of the particles were removed in the simulation, as is the case in
the experiment. It can be seen that the overall correspondence between numerical results and
experimental measurements is good.

5. CONCLUSIONS

This paper introduces a combined three-dimensional lattice Boltzmann and discrete element solu-
tion strategy for numerical simulations of fluid–particle interaction problems. The fluid field is
solved by the extended lattice Boltzmann equations with the incorporation of the Smagorinsky
turbulence approach, while particle interactions are modelled by the DEM. The hydrodynamic
interactions between fluid and particles are realized through the three-dimensional generalization
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Figure 3. Images of gravel motion at different stages of experiment and simulation: (a) gravel motion at
the start of the test; (b) gravel motion at the start of the simulation; (c) gravel motion during the test;
(d) gravel motion during the simulation; (e) gravel motion towards the end of the test; and (f) gravel

motion towards the end of the simulation.
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Figure 4. Excavation profiles of the experiment and simulation: (a) excavation profile of the test and
(b) excavation profile of the simulation.

of a scheme proposed by Noble and Torczynski [13], which leads to a combined procedure for
modelling three-dimensional fluid–particle interactions. The main computational aspects comprise
the lattice Boltzmann formulation for the solution of fluid flows, the incorporation of the large
eddy simulation-based turbulence model within the framework of the LBM for turbulent flows,
the three-dimensional moving boundary condition for hydrodynamic interactions between fluid
and moving particles, and the discrete element modelling of the interaction between particles.
The numerical simulations against experimentation demonstrate that the proposed approach is a
promising computational tool capable of simulating practical fluid–particle interaction problems
with a large number of moving particles and high Reynolds numbers.
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