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Abstract In hydraulic fracturing process in shale rock,mul-
tiple fractures perpendicular to a horizontal wellbore are
usually driven to propagate simultaneously by the pumping
operation. In this paper, a numerical method is developed for
the propagation ofmultiple hydraulic fractures (HFs) by fully
coupling the deformation and fracturing of solid formation,
fluid flow in fractures, fluid partitioning through a horizon-
tal wellbore and perforation entry loss effect. The extended
finite element method (XFEM) is adopted to model arbitrary
growth of the fractures. Newton’s iteration is proposed to
solve these fully coupled nonlinear equations, which is more
efficient comparing to the widely adopted fixed-point iter-
ation in the literatures and avoids the need to impose fluid
pressure boundary condition when solving flow equations.
A secant iterative method based on the stress intensity factor
(SIF) is proposed to capture different propagation velocities
of multiple fractures. The numerical results are compared
with theoretical solutions in literatures to verify the accuracy
of themethod.The simultaneous propagation ofmultipleHFs
is simulated by the newly proposed algorithm. The coupled
influences of propagation regime, stress interaction, well-
bore pressure loss and perforation entry loss on simultaneous
propagation of multiple HFs are investigated.
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1 Introduction

The propagation of multiple fractures driven by the flow of
viscous fluid, also known as hydraulic fractures, can occur
both naturally and in engineering applications. For example,
several dikes may ascend from a deep pressurized magma
chamber simultaneously [1] or multiple cracks, in much
smaller scales, can initiate at cell-cell junctions in epithelial
tissues and driven to propagate by the fluid in the extra-
cellular matrix [2]. In recent years, hydraulic fracturing has
attracted great attention in petroleum industry, which serves
as an appealing technique in promoting the productivity of
unconventional shale gas and oil. In order to increase oper-
ating efficiency and reduce the cost in engineering field,
multi-stage hydraulic fracturing from a horizontal wellbore
is widely employed to stimulate the reservoirs. In each frac-
turing stage, several clusters of perforations are placed along
the horizontal wellbore. The fractures are initiated from the
clusters and then driven to propagate simultaneously by the
pumping operation through the wellbore. Multiple HFs are
desired to propagate with almost the same lengths to stimu-
late the formations as much as possible.

A lot of efforts have been dedicated to the research of
hydraulic fracturing both analytically and numerically in the
literature, especially for the propagation of a single HF. The
analytical research can trace back to the classical and widely
used KGD model [3,4] (named after pioneering researchers
Kristianovic, Geertsma, and de Klerk) and PKNmodel [5,6]
(named after Perkins, Kern and Nordgren). For a HF with
plane strain assumption or a single radial HF, some ana-
lytical and asymptotic solutions are also available in the
literature [7–11]. As for the propagation of multiple HFs,
few analytical solutions exist. Compared with the propaga-
tion of one single HF, the problem including multiple HFs is
cumbersome because of the stress interaction between dif-
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ferent fractures and the interconnected fluid flow system. As
for the effect of stress interaction, stability analysis has been
carried out for the propagation of multiple cracks in elastic
brittle solid medium [12–15]. Uniform growth of all cracks
can be obtained in stable system, while in unstable system
some cracks may stop growing and the others grow faster,
which is called preferential growth. In these stability anal-
yses the fluid flow is not included. However, in hydraulic
fracturing, the fluid flow is the dominated driving force and
can’t be ignored in the analysis process. Olson et al. [16]
and Taleghani [17] studied the propagation of multiple HFs
but each fracture was treated independently. The fluid flows
in different fractures are interconnected by a fluid source
region. In hydraulic fracturing treatments, the fluid source
region is in the horizontal wellbore and in magma intru-
sion it’s in the pressurized chamber. The partitioning of the
fluid into different fractures from the source region is crucial
for the propagation of multiple HFs. Mack et al. [18] sim-
ulated multilayer fracture treatments numerically assuming
that the fractures are separated bywell-defined stress barriers
which excludes the stress interaction effect and the behavior
of each fracture is governed by PKNmodel or pseudo-three-
dimensional model.

In order to better understand the mechanism of the prop-
agation of multiple HFs and optimize engineering designs,
it is important to model the fully coupled problem consider-
ing the stress interaction and solving the fluid flow system.
Bunger et al. [19] derived the theoretical approximation of
the energy required to propagate multiple parallel HFs and
concluded that an energetically optimal spacing exists for
multiple HFs. However, the theoretical approximation is lim-
ited to the cases with more than five HFs, but in practice
three to eight HFs are typically propagating simultaneously.
Lecampion and Desroches [20], Wu and Olson [21] consid-
ered the fluid flow in the horizontal wellbore and solved the
elasticity equations with displacement discontinuity method.

In this paper, a fully coupled numerical method is devel-
oped to simulate the propagation of multiple HFs by XFEM,
which can model arbitrary fracture propagation without
remeshing. As an enhanced finite element method, XFEM
canalsohandle problemswith avariety ofmaterials including
plasticity, damage or inhomogeneity and complex reservoir
structures, like multilayer reservoirs and extensive natural
fractures. It’s also convenient to consider other physical
fields, like seepage or temperature fields. It has been suc-
cessfully employed to model the propagation of one single
HF or multiple non-interconnected HFs [17,22–27]. The
deformation of solid formation, fluid flow in the fractures
and fluid flow in the horizontal wellbore are fully cou-
pled and nonlinear. In former works, the solid deformation
and fluid flow system are solved separately and coupled by
fixed point iteration or the Picard iteration [20,21,28]. The
fixed point iteration is a first-order algorithm and converges

slowly [28,29]. And more importantly, if the fluid equation
is solved separately, fluid pressure at one point should be
specified as the essential boundary condition, which is gen-
erally unknown a priori. One alternative way is to include
the so-called solvability condition [30], which describes the
global mass conservation equation. Khoei et al. [24] pro-
posed another iteration loop to obtain the injection pressure.
In this paper,wepropose aNewton’s iteration scheme to solve
the fully coupled system and derive an integrated tangential
matrix for coupled equations, which can obtain a quadratic
convergence rate and avoids the need to include mass con-
servation equation explicitly or impose pressure boundary
condition. In every time step, the growth lengths of the frac-
tures are unknown and may be different from each other.
Gordeliy and Peirce [23] adopted an implicit level set algo-
rithm (ILSA) proposed in [31] to locate the new front for the
propagation of oneHF. ILSA is based on the asymptotic solu-
tions for different propagating regimes [10] in the vicinity of
fracture tips. However, for the cases with multiple HFs, the
propagating regimes may vary during the propagating pro-
cess because the partitioning of pumping fluid into different
fractures constantly changes and it is also part of the solu-
tions. So it is troublesome to adapt the asymptotic solutions
according to the propagating regimes. In this paper, a secant
iterative method based on the equivalent SIFs is proposed
to update fracture fronts for a specified time increment. An
interaction integral is adopted to calculate the SIFs with high
accuracy.

This paper is organized as follows. In Sect. 2, the simpli-
fications and assumptions of the model are presented and the
governing equations are given for the fully coupled problem.
The discretization of these equations is introduced in Sect. 3.
Then Newton’s iteration for the fully coupling equations and
the secant iteration for fracture growth lengths are presented
in Sect. 4. Several examples are given in Sect. 5 to verify the
accuracy of the newly proposed method, including the prop-
agation of viscosity-dominated and toughness-dominated
fractures, as well as the initiation of two inviscid-fluid-driven
fractures. In Sect. 6, the propagation of multiple HFs is
modeled. The influences of propagation regimes, stress inter-
action, pressure loss in the wellbore and perforation entry
loss on simultaneous propagation of multiple HFs are mainly
investigated.

2 Theoretical model and governing equations

Consider multiple HFs propagating in an impermeable elas-
tic medium � from the wellbore as shown in Fig. 1. The
geometry is symmetric and only the top half is depicted. The
plane strain assumption is adopted for the elastic medium.
The thickness is assumed to be h. The Young’s modulus and
Poisson’s ratio of the linear-elastic medium are denoted as E
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Fig. 1 Multiple HFs propagating simultaneously from a horizontal wellbore and the fully coupled problem

and ν. The casing of thewellbore is assumed to be rigidwith a
radiusa and has no influence on the stress of solid formations.
Incompressible Newtonian fluid is adopted. The number of
HFs driven to propagate simultaneously is denoted as N . The
inlet volume flow rate per unit thickness into half of fracture
I is qI (I = 1, N ) and the volume flow rate in the wellbore
between fracture I and I +1 is QI (I = 1, N −1). The well-
bore length between fracture I and I+1 is DI (I = 1, N−1).
The total pumping flow rate and the terminal flow rate in
the wellbore are denoted as Q0 and QN , respectively. The
pressure pw,I (I = 1, N ) represents the pressure value in
the wellbore at the entrance of fracture I . For expression
brevity the fracture length mentioned hereinafter refers to
half length and is denoted as lI (I = 1, N ). The principal
tectonic stresses in two directions are denoted as σh and σH .
Typically,σh ismuch smaller thanσH and the fractureswould
propagate along the direction of σH .

2.1 Deformation and fracturing of the solid medium

If the body force is negligible, the stress field σ should satisfy
the equilibrium equations

∇ · σ = 0 (1)

The displacement field is denoted as u and the strain field ε

can be calculated from the geometric equation

ε = 1

2

[
∇u + (∇u)T

]
(2)

The stress and strain should satisfy constitutive equations and
for linear-elastic medium the constitutive equations can be
written as

σ = C : ε (3)

where C is elastic matrix.
Assuming displacement ū is prescribed on the displace-

ment boundary �u , fluid pressure p acts on the fractures
surfaces �+

p ∪ �−
p and confining stress t̄ is prescribed on the

external force boundary�t , the boundary conditions for solid
medium can be written as,

u = ū on �u (4)

σ · n = −pn on �+
p ∪ �−

p (5)

σ · n = t̄ on �t (6)

The solid problem is symmetric and only a half part model
is considered.

The fracture will propagate with a deflection angle θ if the
equivalent SIF Keq reaches the critical value KIc, which can
be computed as [32]

θ = 2 arctan
1

4

⎛
⎝ KI

KI I
− sign(KI I )

√(
KI

KI I

)2

+ 8

⎞
⎠ (7)

where KI and KI I are the SIFs corresponding to mode I and
mode II. Keq can be written as [32]

Keq = cos
θ

2

(
KI cos

2 θ

2
− 3KI I

2
sin θ

)
(8)

2.2 Fluid flow in the fracture

For each fracture, the fluid flow is treated as one-dimensional
flow and the flow path is characterized by a curvilinear coor-
dinate s along the fracture with the origin s = 0 at the
perforation entry. The fluid flux along the fracture q(s, t)
can be given by Poiseuille’s equation

q(s, t) = − w3

12μ

∂p

∂s
(9)

inwhichw is the fracture openingwidth andμ is the dynamic
viscosity of the fluid. The width w can be calculated based
on the deformation of the solid medium as

w = (u+ − u−) · n− (10)

where u+ and u− are the displacements on the fracture sur-
faces �+

p and �−
p respectively and n− is the outward normal

vector for �−
p .
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In the absence of fluid leak-off, the continuity equation
for fracture I can be written as

∂w

∂t
+ ∂q

∂s
= 0 (11)

Combining Poiseuille’s equation with the continuity equa-
tion, the Reynolds lubrication equation can be written as

∂w

∂t
= ∂

∂s

(
w3

12μ

∂p

∂s

)
(12)

The inlet boundary is

q|s=0 = qI (13)

If no lag exists at the fracture front, the boundary condition
is

wti p = 0, qtip = 0 (14)

where wti p and qtip are the fracture opening width and flow
flux at the fracture front.

2.3 Fluid flow in the wellbore

The fluid flow in the wellbore is averaged over each cross-
section and treated as one-dimensional flow. The mass
conservation equations can be written as

QI = Q0 −
I∑

J=1

2hqJ , I = 1, . . . , N (15)

QN = 0 (16)

The balance of momentum for the fluid flow in the wellbore
can be expressed in the form of Darcy–Weisbach equation
as [33]

�pw = f (Re, e)
D

2a

ρV |V |
2

(17)

in which pw is the fluid pressure in the wellbore, �pw is
the pressure loss along the wellbore with a length D, ρ is the
density of the fluid and V = Q/A is the cross-sectional aver-
aged fluid velocity. The Darcy friction factor f is a function
of the Reynolds number Re = 2aρ|V |/μ and the roughness
of the wellbore e. For laminar flow (Re < 2000), the friction
factor f = 64/Re. For turbulent condition (Re > 4000),
it can be obtained from Moody chart [34], or calculated by
several approximation equations in the literature [35–37].
In the following simulations, we employ Balasius equation
f = 0.316/Re0.25 to calculate f for the turbulent flow,

which is suited for relatively smooth pipes [33]. For criti-
cal regime (2000 ≤ Re ≤ 4000), a linear interpolation is
adopted between laminar regime and turbulent regime.

If f is set to be zero, the pressure in the wellbore is
constant, which can be used when the pressure loss in the
wellbore is negligible or the pressure field is uniform in the
fluid source region, which is the condition in magma cham-
ber [1].

2.4 Perforation entry loss

When the fluid flows through a perforation cluster, a local
pressure drop is induced by the entry friction of the perfora-
tions. The pressure drop at the perforation cluster of fracture
I is denoted by�pentry,I , which is proportional to the square
of the flux through the perforations and can be given by

�pentry,I = pw,I − pe,I = ϕp,I · 2hqI · |2hqI | (18)

where pw,I is the pressure in thewellbore, pe,I is the pressure
at the inlet of fracture I andϕp,I is the entry loss coefficient at
the entry of fracture I . The entry loss coefficient ϕp depends
on the fluid density, the number of perforations per cluster,
the perforation diameter and the erosion condition of the per-
forations [38].

Limiting the number and diameter of perforations on the
wellbore has been adopted as an effective technique to obtain
simultaneous treatment ofmultiple zones, known as the “lim-
ited entry technique” [39,40]. The perforation entry loss can
influence the partitioning of the fluid into fractures and then
affect the propagation of multiple HFs.

3 Numerical discretization

3.1 XFEM formulation

XFEM is adopted to simulate the propagation of multi-
ple HFs. It’s proposed in 1999 [41] to model arbitrary
crack growth and has been extended to a variety of appli-
cations [42]. Additional degrees of freedom (DOFs) are
included to represent the discontinuity and singularity of the
displacement fields. The approximation of the unknown dis-
placement fields uh(X) in XFEM is given by [43]

uh(X) =
∑
∀I

NI (X)uI +
∑
J∈SH

NJ (X) [H(ϕ(X))

− H(ϕ(XJ ))]bJ +
∑
K∈ST

∑
m

NK (X)

[
�m(X) − �m(XK )

]
cmK (19)

where ST is the set of nodes located around the fracture tip,
SH is the set of nodes in elements completely crossed by
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the fracture (but not in ST ), NI (X) is the standard shape
function and uI is the standard DOF for node I , bJ and cmK
are added DOFs for Heaviside and fracture tip enrichments
respectively. The signed distance from the point X to the
fracture surface is denoted as ϕ(X) and H(·) is the Heav-
iside step function. A function collection �m is adopted to
capture the asymptotic field near the fracture tip. If there’s no
lag between fluid front and fracture tip, the strong coupling
between the fluid and the solid induces multi-scale behavior
at the fracture tip [10]. The asymptotic displacement field
behaves as rλ and 1/2 ≤ λ < 1 for different propagation
regimes. Gordeliy and Peirce [44] have suggested the fol-
lowing enrichment strategies for different regimes

{
�m}4

m=1

= rλ {sin(λθ), cos(λθ), sin(λ − 2)θ, cos(λ − 2)θ} (20)

where 〈r, θ〉 is the polar coordinate system at the fracture
tip. However, just as indicated in the introduction, the par-
titioning of the fluid into different fractures is constantly
changing and the propagation regimes may change. It would
be cumbersome to include different enrichments during the
propagation process and so we only include λ = 1/2 in the
simulation. Strictly speaking, the relationship λ = 1/2 is
only valid for the conditions with a fluid lag or without a
lag but toughness-dominated. In the simulation, we limit the
tip enrichment within a quite small domain around the frac-
ture tip and mainly take the advantage of the discontinuity
representation of the enrichment. For relatively fine meshes,
the numerical results show acceptable accuracy for different
regimes, which can be referred to in Sect. 5.

For expression brevity, we combine the last two terms in
Eq. (19) and rewrite it as

uh(X) =
∑
∀I

NI (X)uI +
∑
J∈S

J (X)φJ (21)

in which S = {SH , 4 × ST }, J (X) and φJ represent
enriched shape function and enriched DOF, respectively.

Substituting displacement approximation Eq. (21) into the
weak formulation of governing Eqs. (1)–(6), the discretized
equations can be obtained as [45]

(
R1

R2

)
=
[
Kuu Kuφ

Kφu Kφφ

](
u
φ

)
−
(
fu

fφ

)
= 0 (22)

where (uφ)T are standard DOFs and enrichedDOFs, respec-
tively, Kuu ,Kuφ ,Kφu andKφφ are global stiffness matrixes
by assembling the element stiffness matrixes and fu and fφ

are external forces. The superscripts “u” and “φ” correspond
to standard DOFs and enriched DOFs respectively. The ele-
ment stiffness matrix can be computed as

[
Kuu

e Kuφ
e

Kφu
e Kφφ

e

]
=
∫

�e

[
Bu Bφ

]T
C
[
Bu Bφ

]
d� (23)

where �e is the domain of the current element and the com-
ponents of Bu and Bφ are

Bu
I =

⎡
⎣
NI,x 0
0 NI,y

NI,y NI,x

⎤
⎦ , Bφ

I =
⎡
⎣

I,x 0
0 I,y

I,y I,x

⎤
⎦ (24)

Within the element containing the fracture, I,x and I,y

are discontinuous and subdomain integration method [41] is
adopted to calculate the discontinuous integral. The external
forces for each element are given as

fue =
∫

�te

NT · t̄ d�, fφe =
∫

�+
pe+�−

pe

�T · (−pn)d� (25)

where �te, �+
pe and �−

pe are the boundaries within the current
element and the components of N and � are given by

NI =
[
NI 0
0 NI

]
,�I =

[
I 0
0 I

]
(26)

3.2 Discretization of the fluid flow equations in fractures

Finite volume method (FVM) is adopted to model the fluid
flow in fractures. The fracture in one solid element is
discretized as onefluid cell. Firstlywe focus on the discretiza-
tion of a single fracture and then integrate the discretization
for all fractures to obtain the final discretization equations.

Assume that the flow in one single fracture with an inlet
fluxqinlet is discretized byn fluid elements as shown inFig. 2.
The pressure and the opening width at the midpoint of the
i th fluid element are denoted as pi and wi , respectively. Two
endpoints of the i th fluid element are denoted as i − 1/2 and
i + 1/2. The approximation of the pressure along a fracture
is given by the linear Lagrange interpolation as follows:

p(s, t) =
n∑

i=1

Li (s)pi (t) (27)

where for i = 1,

L1(s) =
⎧⎨
⎩

s2−s
s2−s1

, if s1/2 ≤ s < s2

0, else
(28)
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Fig. 2 Discretization of the
fluid flow in a HF

s

1 n2 1n

1/ 2 3 / 2 1/ 2n 1/ 2n

i1i 1i

1/ 2i 1/ 2i

inletq

and for 2 ≤ i ≤ n − 1,

Li (s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s−si−1
si−si−1

, if

{
si−3/2 ≤ s < si , if i = 2
si−1 ≤ s < si , else

si+1−s
si+1−si

, if

{
si ≤ s < si+3/2, if i = n − 1
si ≤ s < si+1, else

0, else

(29)

and for i = n,

Ln(s) =
⎧⎨
⎩

s−sn−1
sn−sn−1

, if sn−1 ≤ s < sn+1/2

0, else
(30)

The fracture opening width can be computed by Eqs. (10)
and (21) as

w(s, t) = w (s(X), t) =
[
uh(X+) − uh(X−)

]
· n−

=
∑
J∈S

[
J (X+) − J (X−)

]
φJ · n− (31)

We just calculate the width at the midpoints by Eq. (31)
and approximate w along the fracture by the linear Lagrange
interpolation similar to Eq. (27) with wn+1/2 = 0 included.

Integrating the Reynolds equation (12) over the i th fluid
cell and approximating the fluxes with the central difference
and approximating the derivative versus time using the back-
ward difference, for 2 ≤ i ≤ n − 1 we can get

∫ si+1/2

si−1/2

w − w0

�t
ds

= w3
i+1/2

12μ

pi+1 − pi
si+1 − si

− w3
i−1/2

12μ

pi − pi−1

si − si−1
(32)

in which �t is the time increment and the quantities in the
previous time step are marked with the superscript “0” and
the other quantities are in the current time step. Substituting
the approximation of w into Eq. (32) and rearranging the
terms, we can obtain

Ai,i−1 pi−1 + Aii pi + Ai,i+1 pi+1 − di = 0, 2 ≤ i ≤ n − 1

(33)

where

Ai,i−1 = w3
i−1/2

12μ(si − si−1)
, Aii = − w3

i−1/2

12μ(si − si−1)

− w3
i+1/2

12μ(si+1 − si )
, Ai,i+1 = w3

i+1/2

12μ(si+1 − si )
(34)

and

di = 1

�t

[(
si+1/2 − si−1/2

) · wi−1/2 + 2wi + wi+1/2

4

−
(
s0i+1/2 − s0i−1/2

)
· w0

i−1/2 + 2w0
i + w0

i+1/2

4

]

(35)

wi−1/2 = Li−1(si−1/2)wi−1 + Li (si−1/2)wi , wi+1/2

= Li (si+1/2)wi + Li+1(si+1/2)wi+1 (36)

For i = 1, including the inlet flux boundary Eq. (13) we can
obtain

A11 p1 + A12 p2 − d1 = 0 (37)

with

A11 = − w3
3/2

12μ(s2 − s1)
, A12 = w3

3/2

12μ(s2 − s1)
(38)

and

d1 = 1

�t

[(
s3/2 − s1/2

) · w1 −
(
s03/2 − s01/2

)
· w0

1

]
− qinlet

(39)

For i = n, including the fracture front boundary condi-
tions (14) we can obtain

An,n−1 pn−1 + Ann pn − dn = 0 (40)

with

An,n−1 = w3
n−1/2

12μ(sn − sn−1)
, Ann = − w3

n−1/2

12μ(sn − sn−1)

(41)
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and

dn = 1

�t

[(
sn+1/2 − sn−1/2

) · wn−1/2 + 2wn

4

−
(
s0n+1/2 − s0n−1/2

)
· w0

n−1/2 + 2w0
n

4

]
(42)

Combining Eqs. (33), (37) and (40), the discretization for-
mulation of the fluid flow equation can be given by

∑
j

Ai j p j − di = 0,

⎧⎨
⎩

j = 1, 2 if i = 1
j = n − 1, n if i = n
j = i − 1, i, i + 1 else

(43)

or in matrix form as

A (w(φ)) · p − d (w(φ), qinlet ) = 0 (44)

where A is a function of the widths of midpoints w, d is a
function of w and the inlet flux qinlet . As shown in Eq. (31),
w can be further written as w(φ).

Next, we will integrate the discretization for all fractures.
To distinguish different fractures, the quantities related to
fracture I aremarkedwith subscript “I”.Thepressure and the
width are respectively denoted as pI i andwI i at themidpoint
of the i th fluid element on fracture I .

DefinepI = [
pI1, pI2, . . . , pInI

]T andwI = [wI1, wI2,

. . . , wI nI

]T for the midpoints on fracture I and define
AI , dI correspondingly. Define p f = [

(p1)T, (p2)T,

. . . , (pN )T
]T
, w f = [

(w1)
T, (w2)

T, . . . , (wN )T
]T

and q =
[q1, q2, . . . , qN ]T, d f = [

(d1)T, (d2)T, . . . , (dN )T
]T

for all
the N fractures. Finally, the discretization formulation for all
HFs can be assembled as

R3
(
φ,p f ,q

) = A f
(
w f (φ)

)·p f −d f
(
w f (φ),q

) = 0 (45)

with

A f =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

A2

.

.

.

AN

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)

3.3 Discretization of fluid flow equations in the wellbore

The pressure at the inlet of fracture I pe,I can be approxi-
mated by the pressure at the midpoint of the first fluid cell
pI1. Then Eq. (18) can be rewritten as

pw,I ≈ pI1 + 4ϕp,I h
2qI · |qI | (47)

For the flow in the wellbore between the I th and (I + 1)th
fractures, the pressure loss can be given by

pw,I − pw,I+1 =
(
pI1 + 4ϕp,I h

2qI · |qI |
)

−
(
pI+1,1 + 4ϕp,I+1h

2qI+1 · |qI+1|
)

, 1 ≤ I ≤ N − 1

(48)

Substituting Re = 2aρ|V |/μ and V = Q/(πa2) into
Eq. (17) and combining with Eq. (15), we can obtain

(
pI1 + 4ϕp,I h

2qI · |qI |
)

−
(
pI+1,1 + 4ϕp,I+1h

2qI+1 · |qI+1|
)

− ρDI

4π2a5
f

⎛
⎝2ρ

∣∣∣Q0 − ∑I
J=12hqJ

∣∣∣
πμa

, e

⎞
⎠ ·

(
Q0

−
I∑

J=1

2hqJ

) ∣∣∣∣∣Q0 −
I∑

J=1

2hqJ

∣∣∣∣∣ = 0, 1 ≤ I ≤ N − 1

(49)

The above N − 1 equations are written as

R4
(
p f ,q

) = 0 (50)

Substituting Eqs. (15) into (16) we can obtain

Q0 −
N∑

J=1

2hqJ = 0 (51)

or in a matrix form

R5 (q) = 0 (52)

4 Solving schemes

For a given time increment �t , the solution of the coupled
equations includes the propagation lengths of all HFs �l,
the values of standard DOFs u and enriched DOFs φ for the
solid nodes, the pressures on the midpoints of all fluid cells
p f and the inlet fluxes for all HFs q. The propagation lengths
�l are coupled with the other unknowns in a complex form
and it’s solved separately. There are two nested loops in a
time step. The outer loop is an iteration for the propagation
lengths with secant iteration method and the inner loop is
Newton’s iteration to solve the unknowns

(
u,φ,p f ,q

)
.
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4.1 Newton’s iteration

For a set of specified fracture lengths, the discretization equa-
tions to be solved are the combination of solid deformation
equations Eq. (22), fracture flow equations Eq. (45), wellbore
flow equations Eqs. (50) and (52), which can be combined
as

R
(
u,φ,p f ,q

) =

⎡
⎢⎢⎢⎢⎣

R1 (u,φ)

R2
(
u,φ,p f

)
R3

(
φ,p f ,q

)
R4

(
p f ,q

)
R5 (q)

⎤
⎥⎥⎥⎥⎦

= 0 (53)

which are fully coupled and nonlinear. Newton’s iteration is
used to solve these equations. Assume

(
uα,φα,p f,α,qα

)
are

the values at the α th iteration and then

⎛
⎜⎜⎝

uα+1

φα+1
p f,α+1

qα+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

uα

φα

p f,α

qα

⎞
⎟⎟⎠

−K−1 (uα,φα,p f,α,qα

) · R (
uα,φα,p f,α,qα

)
(54)

where the system JacobianmatrixK is given in the following
formulation:

K = ∂R
∂(u,φ,p f ,q)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kuu Kuφ

Kφu Kφφ − ∂fφ
∂p f

∂R3
∂φ

A f − ∂d f
∂q

∂R4
∂p f

∂R4
∂q
∂R5
∂q

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(55)

The terms in Eq. (55) are assembled by the components com-
puted on the solid and fluid elements.

Denoting the fracture index in the current solid element
as I and substituting Eq. (27) into the second equation of
Eq. (25), we can obtain the external force corresponding to
the enriched DOFs as

fφe =
∫

�+
pe+�−

pe

�T ·
[
−
( nI∑

i=1

L I i pI i

)
n

]
d� (56)

where L I i is the Lagrange interpolation function for the i th
node on fracture I . The derivative with respect to pMk can
be given as

∂fφe
∂pMk

=
{∫

�+
pe+�−

pe
�T · (−L Ikn)d�, if M = I

0, else
(57)

As the components of ∂R3/∂φ, the derivative of Eq. (43)
for the i th fluid cell on fracture I with respect to φm can be
written as

∂R3,I i

∂φm
=
∑
j

[∑
k

∂AI,i j

∂wI,k

∂wI,k

∂φm
pI, j

]

−
∑
k

∂dI,i
∂wI,k

∂wI,k

∂φm
,

⎧⎨
⎩

j, k = 1, 2 if i = 1
j, k = nI − 1, nI if i = nI
j, k = i − 1, i, i + 1 else

(58)

where R3,I i represents Eq. (43) for the i th fluid cell on frac-
ture I .

For −∂d f /∂q, from Eq. (39) we can obtain

∂dI i
∂qM

=
{−1, if i = 1 and M = I
0, else

(59)

We can get ∂R4/∂p f and ∂R4/∂q from the derivative of
Eq. (49) as

∂R4,I

∂pMk
=
⎧⎨
⎩
1, if k = 1 and M = I
−1, if k = 1 and M = I + 1
0, else

(60)

∂R4,I

∂qM
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ρDI
4π2a5

[
∂ f

∂qM
·
(
Q0 − ∑I

J=1 2hqJ
)

− 4 f h
]

·
∣∣∣Q0 − ∑I

J=1 2hqJ
∣∣∣ , if 1 ≤ M < I

8ϕp,I h2 |qI | − ρDI
4π2a5

[
∂ f

∂qM
·
(
Q0 − ∑I

J=1 2hqJ
)

− 4 f h
]

·
∣∣∣Q0 − ∑I

J=1 2hqJ
∣∣∣ , if M = I

−8ϕp,I+1h2 |qI+1| , if M = I + 1
0, else

(61)

The derivative ∂R5/∂q can be obtained by

∂R5,1

∂qM
= −2h (62)

where R5,1 is the sole component of R5.
The convergence criterion for Newton’s iteration is
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max

(
‖uα+1 − uα‖2

‖uα‖2 ,

∥∥φα+1 − φα

∥∥
2∥∥φα

∥∥
2

,

∥∥p f,α+1 − p f,α
∥∥
2∥∥p f,α

∥∥
2

,
‖qα+1 − qα‖2

‖qα‖2

)
< ε (63)

The permissible error ε is adopted as 10−5 in the simulations.

4.2 Secant iteration for fracture lengths

For a prescribed time increment �t , the propagation lengths
are the unknowns to be found. For a single fracture, secant
iteration can be adopted based on the fact that the equivalent
SIF Keq is always equal to the critical value KIc. The equiv-
alent SIF Keq can be regarded as a function of the fracture
propagation length �l and the difference between Keq and
KIc can be written as

g (�l) = Keq (�l) − KIc = 0 (64)

Secant iteration is a two-step iterative algorithm and two ini-
tial estimated values, �l1 and �l2, should be prescribed.
Then �l3 for the next iteration step can be given as

�l3 = �l2 − g
(
�l2

) (
�l2 − �l1

)

g
(
�l2

) − g
(
�l1

) (65)

where the superscript represents the iteration step. The itera-
tion continues until the convergence condition is satisfied by

∣∣Keq
(
�l3

) − KIc
∣∣

|KIc| < ε (66)

where ε is set to be 10−4 in the iteration for the length and
may be increased to 10−3 if too many iterations are needed.

For the propagation of multiple HFs, fractures can inter-
act with each other and the equivalent SIF for fracture
I , Keq,I (�l1,�l2, . . . ,�lN ), is a function of propagation
lengths of all fractures. Newton’s iteration or quasi-Newton’s
iteration can be adopted to get faster convergence. How-
ever, in both iteration methods the derivatives of Keq,I with
respect to �lJ , 1 ≤ I ≤ N , 1 ≤ J ≤ N , need to be calcu-
lated by numerical method, which requires large computing
resources. So in our simulation, the secant iteration is adopted
for each fracture and it also reveals acceptable convergence
efficiency.

4.3 Computation of SIFs

The secant iteration for fracture length is based on the SIFs
and the extraction of SIFswith good accuracy is the guarantee
of convergence. Here, interaction integral [46–48] is adopted
to extract the SIFs. The integral domain S is shown in Fig. 3,

0CC

C 1x

2x

S

m

Fig. 3 The domain for interaction integral

where C0 is the outer boundary of the domain. Assume the
fracture in the domain is straight and C+ and C− are fracture
surfaces inside the integral domain. The outward unit normal
vector on the boundary C = C0 +C+ +C− is denoted asm.
The local coordinate system with the origin located on the
fracture front and x1 axis tangential to the fracture is denoted
as 〈x1, x2〉. The interaction integral can be given as

Im =
∫

S

[
σi j

∂umi
∂x1

+ σm
i j

∂ui
∂x1

− Wδ1 j

]
∂β

∂x j
dS

+
∫

C++C−
p
∂um2
∂x1

βm2dC, m = I, I I (67)

where
(
σi j , εi j , ui

)
are the fields of the present state and(

σm
i j , ε

m
i j , u

m
i

)
are the theoretical asymptotic fields for the

crack with mode m = I, I I . The function W = σi jε
m
i j =

σm
i j εi j and β is a weight function which equals to 1 at the

fracture front and vanishes on the outer boundary C0. SIFs
can be given by

Km = E ′

2
Im, m = I, I I (68)

where E ′ = E/
(
1 − ν2

)
for plane strain model.

5 Verification

Numerical examples are given to verify the proposed algo-
rithm in this paper for the propagation of one HF and the
initiation of two HFs. In the first example, the numerical
results are comparedwith the analytical and asymptotic solu-
tions in the literatures for the propagation of one single HF.
For a model containing two HFs without stress interaction
and driven by inviscid fluid we can derive the fluid parti-
tioning analytically for the fracture initiating procedure. The
numerical results are compared with the analytical solutions
considering different entry loss coefficients. The characteris-
tic dimensions of the model are much larger than the fracture
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lengths, which can be considered as approximation of the
propagation in an infinite domain. Quadrilateral elements
are adopted. Fine meshes are generated in the propagation
regions and relatively coarse meshes are adopted far away
from these regions.

5.1 Propagation of one HF

The analytical and semi-analytical solutions for the prop-
agation of one plane-strain HF can be found in [8]. A
dimensionless toughness Km is defined to characterize the
propagation regimes as follows:

Km = K ′
(
E ′3μ′q

)1/4 (69)

where K ′ = 8KIc/
√
2π , μ′ = 12μ and q = 2qinlet .

If Km = 0, the solution is called M-vertex solution and
if Km → ∞, it’s called K-vertex solution. For the range
Km < 1, the propagation is in viscosity-dominated regime,
which means most of the energy is dissipated by the viscous
flow in the fracture. The solution for viscosity-dominated
regime can be approximated by the M-vertex solution [8].
In contrast, for the range Km > 4, the propagation is
in toughness-dominated regime, which means most of the
energy is dissipated by the fracturing of the solid medium.
The first-order K-vertex solution can be adopted to approx-
imate this regime. The range 1 ≤ Km ≤ 4 is in transition
regime.

The geometry dimensions are shown in Fig. 4. Only half
of the model is depicted. The parameters for two cases are
shown in Table 1. The dimensionless toughness Km is 0.685
for Case 1, which is viscosity-dominated regime and it’s
6.85 for Case 2, which is toughness-dominated regime. 9010

inletq

10
0 

m

200 m

Fig. 4 Propagation of one HF

quadrilateral elements are adopted to discretize the model.
The initial time increments for viscosity-dominated regime
and toughness-dominated regime are 0.02 and 0.1 s, respec-
tively. In numerical simulation, an initial fracture with a
short length should be given in advance and the initial condi-
tions are prescribedwith theoretical solutions. The numerical
results for the two different regimes are shown in Figs. 5 and
6. The evolutions of the fracture length and inlet pressure are
compared with the theoretical solutions, which are in good
agreement. For both regimes, the fracture lengths varies with
time in the order of 2/3 and the inlet pressures varies in the
order of −1/3.

Theoretical and numerical pressure profiles along the frac-
ture for both regimes are depicted in Fig. 7. The profiles
are extracted from the results when the fracture reaches the
length of 10m. The position s along the fracture is scaled
by the fracture length and the pressure is scaled by the
inlet pressure. We can see that the numerical pressure pro-
files agree well with the theoretical profiles for both regimes
except that the theoretical pressure for viscosity-dominated
regime is singular near the fracture tip and so relatively larger
errors exist for numerical results near the tip. For toughness-
dominated regime, the pressure is nearly constant along the
fracture just as expected.

In order to demonstrate the performance of the secant iter-
ation for fracture length, the numbers of secant iterations
versus the time steps for both regimes are shown in Fig. 8 for
the first 50 steps. The convergence of the secant algorithm
can be obtained mostly within four iterations.

5.2 Initiation of two HFs with different lengths

In this example, we investigate the influence of the perfo-
ration entry loss on fluid partitioning. Consider two short
fractures with different initial half lengths of 1.2 and 1.0m,
as shown in Fig. 9. The two fractures are located with a
distance of D = 100 m, which is much larger than their
lengths and so the interaction stress between them can be
neglected. They are interconnected by a wellbore and invis-
cid fluid is pumped into them. Pressure loss in the wellbore
is also neglected. We focus on the process before frac-
tures start to propagate, which is similar to the initiation
of two HFs. The other parameters include E = 20 GPa,
ν = 0.2, Q0 = 0.002 m3/s, h = 1 m and the initial pres-
sure p0 = 1 MPa. There are 11,547 quadrilateral elements
meshed and the time increment is 0.01s. In view of the

Table 1 Parameters for
different propagation regimes

E (GPa) ν KIc
(
MPa

√
m
)

μ (Pa s) qinlet
(
m2/s

) Km

Case 1 10 0.2 4.9 1.0 0.01 0.685

Case 2 10 0.2 4.9 0.001 0.001 6.85
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Fig. 5 Simulation results for viscosity-dominated regime: a evolution of the fracture length. b Evolution of the inlet pressure

0 10 20 30 40 50
0

3

6

9

12

15

fra
ct

ur
e 

le
ng

th
 (m

)

time (s)

 theoretical fracture length
 numerical fracture length

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

in
le

t p
re

ss
ur

e 
(M

P
a)

time (s)

 theoretical inlet pressure
 numerical inlet pressure

(a) (b)

Fig. 6 Simulation results for toughness-dominated regime: a evolution of the fracture length. b Evolution of the inlet pressure
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Fig. 7 Theoretical and numerical pressure profiles along the fracture
for viscosity-dominated and toughness-dominated regimes, respec-
tively

assumptions that the stress interaction and fluid viscosity
are neglected, this problem is solved analytically as given
in “Appendix”.
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Fig. 8 Numbers of secant iterations versus time steps for the prop-
agation of one single fracture in viscosity-dominated and toughness-
dominated regimes

Four different entry loss coefficients ϕp = 104, 105, 106,
107 MPa s2/m6 are considered. The evolution of inlet fluxes
into different fractures by theoretical analysis and numerical
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simulation is shown in Fig. 10. Just as the same as the ana-
lytical analysis given in “Appendix”, the inlet fluxes for the
two fractures are initially equal and they will evolve to differ-
ent steady values. The steady values are independent of the
entry loss coefficients. However, the critical time defined in
“Appendix” tc = 4c1c2ϕphQ0/ (c1 + c2) is proportional to

100m
1 1.2ml 2 1ml

0Q

10
0 

m

200 m

Fig. 9 Initiation of two HFs with different initial lengths

ϕp. As the increase of ϕp, more time is required for the inlet
fluxes to reach the steady values, which means in a relatively
long period of time the fluid is nearly evenly partitioned.
Perforation entry loss can act as a counterbalance effect to
non-uniform fluid partitioning. If too much fluid flows into
one fracture, much more pressure will be lost at the inlet,
which decreases the driving force for that fracture and then
the inlet flux decreases accordingly.

6 Study of simultaneous propagation of multiple
HFs

6.1 Model description and scale estimation

WhenmultipleHFs are driven to propagate simultaneously as
shown in Fig. 11, some fracturesmay grow faster than others,
which is not desired in engineering application. The propa-
gation path may be affected by several factors, including the
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Fig. 10 Evolution of analytical and numerical inlet fluxes into fractures for different entry loss coefficients: a ϕp = 104 MPa s2/m6, b ϕp =
105 MPa s2/m6, c ϕp = 106 MPa s2/m6, d ϕp = 107 MPa s2/m6
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Fig. 11 Simultaneous propagation of multiple HFs

propagation regime, the stress interaction, the pressure loss in
the horizontal wellbore and perforation entry loss. The stress
interaction and the wellbore pressure loss may induce differ-
ent driving pressures for different fractures, which result in
non-uniform fluid partitioning. Perforation entry loss effect
can counterbalance the driving forces and promote uniform
partitioning. The propagation regime determines the fluid
flow and the interaction stress, which can also affect the prop-
agation process. The influence of each effect is estimated as
follows.

(a) The interaction stressσint between two fractures scales as
E ′W/D, where W is the characteristic fracture opening
width assuming that the total pumping flux Q0 is evenly
partitioned into N fractures [20] and D is their distance.

For viscosity scaling, the characteristic fracture length Lm

and opening width Wm are defined as [8]

Lm =
(
E ′Q3

pt
4

μ′

)1/6

, Wm =
(

μ′Q3
pt

2

E ′

)1/6

(70)

where Qp = Q0/N . The stress interaction effect varies with
fractures length. So define κ = Lm/D to characterize frac-
ture length by the distance and Lm = κD. The width Wm

can be obtained as

Wm =
(

μ′Qp

E ′

)1/4

· √
κD (71)

and then the interaction stress σint for viscosity-dominated
regime can be given as

σint ∝ √
κ · E

′3/4Q1/4
p μ′1/4

√
D

(72)

For toughness scaling, the characteristic fracture length Lk

and opening width Wk are defined as [8]

Lk =
(
E ′Qpt

K ′

)2/3

, Wk =
(
K ′2Qpt

E ′2

)1/3

(73)

By similar derivation, σint for toughness-dominated regime
can be given as

σint ∝ √
κ · K ′

√
D

(74)

(b) The pressure loss in thewellbore can be estimated by sub-
stituting V = Q0/

(
πa2

)
into Darcy–Weisbach equation

Eq. (17), which can be written as

pwellbore ∝ f (Re, e) · DρQ2
0

4π2a5
(75)

(c) The counterbalance pressure by the entry friction can be
given as

pper f ∝ ϕpQ
2
p (76)

The fluid can be almost evenly partitioned if counterbal-
ance pressure pper f is in the same order with σint+ pwellbore,
which can be written as

pper f ∝ σint + pwellbore (77)

In the early stage of propagation, κ = Lm/D is relatively
small and the interaction stress in Eqs. (72) or (74) is slight.
The pressure loss in the wellbore is the main reason for pres-
sure difference. As fractures propagate, σint increases and
may become the dominating effect for pressure difference.

In order to quantitatively investigate the influences of
propagation regimes, stress interaction, pressure loss in the
wellbore and perforation entry loss in details, the simultane-
ous propagation of four HFs is modeled as shown in Fig. 11.
We only consider the conditions that the maximum in situ
stress ismuch larger than theminimum in situ stress, inwhich
the fractures would propagate in the direction of the maxi-
mum in situ stress without kinking [20]. Even though the
growth path is straight, the advantage of XFEM that the frac-
ture fronts can locate inside the elements can still be revealed
and this developed method can be easily extended to curve
fractures. The parameters are given in Table 2. The initial
lengths are 2.1m and the four fractures are located with equal
distance at DI = 10 m, I = 1, 2, 3. The maximum and min-
imum in situ stresses are 10 and 0 MPa respectively. Any
other minimum in situ stress can be superimposed on the
current values and so only net pressure in the fractures is
considered here. 20,205 quadrilateral elements are adopted
to discretize the geometry.
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Table 2 Parameters for simultaneous propagation of four HFs

E (GPa) ν σh (MPa) σH (MPa) Q0 ( m3/s) μ ( Pa s) ρ ( kg/m3) a (m) h (m) DI (m)

20 0.2 0 10 0.04 0.001 1000 0.05 20 10
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Fig. 12 Simulation results of the propagation of four HFs for KIc = 3 MPa
√
m when the pressure loss in the wellbore and the perforation entry

loss are negligible: the evolution of a fracture lengths and b inlet fluxes

6.2 Effect of stress interaction

Firstly, we focus on the influence of stress interaction on
the propagation of multiple HFs. The pressure loss in the
wellbore and the perforation entry loss are neglected, which
means both pper f and pwellbore are zero. The cases with
KIc = 3 MPa

√
m and KIc = 1 MPa

√
m are simulated and

the initial time increments are 0.1 and 0.3 s, respectively. The
results are shown in Figs. 12 and 13. In both cases, fracture
1 and 4 propagate with the same velocity and so are fracture
2 and 3 because the pressure in the wellbore is uniform. The
initial SIFs of the outer fractures, 1 and 4, are a little larger
than those of the inner fractures, 2 and 3, because of the stress
interaction among them. In both cases, the inner fractures
would stop propagating finally because of the shielding effect
from the outer fractures. Denoted by the open square symbols
in Figs. 12b and 13b, the inlet fluxes into the inner fractures
would evolve to zero, which means most of the fluid would
flow into the outer fractures. The inlet fluxes of fracture 2
and 3 may even be negative, which means that the fluid in
these fractures flows out of them and into the wellbore. As
the outer fractures propagate and become longer, the inner
fractures are shielded and squeezed.What’smore, the driving
pressure in the wellbore decreases gradually and the fluid in
the inner fractures flows out. However, the fluid volumes in
the inner fractures are finite and the outflow rates are quite
small.

The inner fractures would stop propagating almost at the
initial time for KIc = 3 MPa

√
m, which is toughness-

dominated regime assuming the fluid is evenly partitioned.
However, they would propagate to some distances before
they stop for KIc = 1 MPa

√
m, which is close to viscosity-

dominated regime.Thephenomenon shows that the viscosity-
dominated regime can promote simultaneous propagation
of fractures compared with toughness-dominated regime. In
viscosity-dominated regime, the fluid flow in the fractures
dominates the fractures growth and the effect of interaction
stress is relatively small.

6.3 Effect of pressure loss in the wellbore

The pressure loss in the horizontal wellbore is included.
The simulation results are shown in Figs. 14 and 15 for
KIc = 3 MPa

√
m and KIc = 1 MPa

√
m, respectively.

Different from the results neglecting the pressure loss in
the wellbore, all the four fractures propagate with different
velocities. Fracture 4 propagates more slowly than fracture
1 because of the pressure loss in the wellbore and most of
the fluid would finally flow into fracture 1. The evolution of
SIFs for four fractures with KIc = 3 MPa · √

m is shown in
Fig. 14c. Fracture 1 is always propagating and KI for fracture
1 is always equal to KIc. Fracture 4 propagates for a short
period of time and after that KI for fracture 4 drops below
KIc. The number of secant iteration is shown in Fig. 14d.
The evolutions of fracture lengths and KI demonstrate the
capability of the secant iteration method for determining the
fracture lengths based on SIFs.
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Fig. 13 Simulation results of the propagation of four HFs for KIc = 1 MPa
√
m when the pressure loss in the wellbore and the perforation entry

loss are negligible: the evolution of a fracture lengths and b inlet fluxes
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Fig. 14 Simulation results of the propagation of four HFs for KIc = 3 MPa
√
m when the perforation entry loss is negligible: the evolution of a

fracture lengths, b inlet fluxes and c KI ; d the number of secant iterations for fracture lengths
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Fig. 15 Simulation results of the propagation of four HFs for KIc = 1 MPa
√
m when the perforation entry loss is negligible: the evolution of a

fracture lengths and b inlet fluxes
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Fig. 16 Simulation results of the propagation of four HFs for KIc = 1 MPa
√
m and φp = 104 MPa s2/m6: the evolution of a fracture lengths

and b inlet fluxes
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Fig. 17 Simulation results of the propagation of four HFs for KIc = 1 MPa
√
m and φp = 103 MPa s2/m6: the evolution of a fracture lengths

and b inlet fluxes
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6.4 Effect of perforation entry loss

As shown in Eq. (77), if the pressure loss at the perfo-
rations can counteract the interaction stress and wellbore
pressure loss, the fluid is tend to be evenly partitioned. As
an examination, we substitute the parameters in this sim-
ulation into Eq. (77) for KIc = 1 MPa

√
m and κ = 1.

We can obtain σint ∝ 1 MPa, pwellbore ∝ 0.01 MPa,
pper f ∝ ϕp · 10−4 m6 s−2 . Because we have adopted a
model for relatively smooth pipes, the pressure loss in the
wellbore is relatively small. By the estimation, perforations
with ϕp ∝ 104 MPa s2/m6 can lead to nearly uniform par-
titioning. The numerical results with ϕp = 104 MPa s2/m6

and ϕp = 103 MPa s2/m6 are shown in Figs. 16 and 17.
With ϕp = 104 MPa s2/m6, the fluid is evenly partitioned
and all the fractures propagate with almost the same lengths.
When ϕp is 103 MPa s2/m6, even though the fluid can’t be
evenly partitioned, it has been greatly improved compared
with the cases in Fig. 15 without entry loss. The effect of
the pressure loss in the wellbore is nearly eliminated. For
KIc = 3 MPa

√
m, similar results can be obtained.

7 Conclusions

In this paper, a fully coupled model is established for the
simultaneous propagation of multiple HFs. The deformation
of the solid medium, the propagation of fractures, the fluid
flow in fractures, the flow in the wellbore and the pressure
loss at the perforations are all considered. XFEM is adopted
to model arbitrary propagation of fractures, which can allow
the location of fracture front inside the element and easily
deal with anisotropy or heterogeneous materials. In order to
solve the fully coupled nonlinear equations efficiently, New-
ton’s iteration is proposed to solve the equations. A secant
iteration is adopted to determine the new positions of fracture
fronts. The viscosity-dominated and toughness-dominated
regimes are simulated and comparedwith the semi-analytical
solutions. The analytical solution of two inviscid-fluid-driven
fractures initiation is derived and also modeled with the
newly developedmethod. The good agreements of numerical
results and analytical solutions demonstrate the accuracy of
the method.

For the propagation of multiple HFs in each fracturing
stage, uniform fluid partitioning and fracture propagation
with the same lengths are desired in engineering application.
The propagation regime, stress interaction between different
fractures, pressure loss in the wellbore and the perforation
entry loss interplay together to influence the whole prop-
agation process. Generally, the stress interaction and the
pressure loss in the wellbore are two sources disturbing uni-
form driving forces and may induce preferential growth. The
perforation entry loss can compete with the stress interac-

tion and the wellbore pressure loss and counterbalance the
pressures to guarantee uniform partitioning. An magnitude
estimation and numerical simulations are conducted to inves-
tigate the effect of these factors.

In practice, other effects which can disturb fracture driv-
ing forces includedifferent fracture lengths, different tectonic
stresses, heterogeneity of the formations and so on. The entry
loss coefficients may also vary among perforation clusters.
All these effects may induce different propagation veloci-
ties for multiple HFs and it’s cumbersome to obtain uniform
partitioning. Even though a large entry loss coefficient can
promote uniform partitioning, it would increase the pumping
operation pressure which is limited by the operation equip-
ment and so a proper entry loss coefficient should be designed
carefully.
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Appendix: Fluid partitioning into two HFs

Assume two stationary fractures in linear-elastic solid
medium are interconnected by a wellbore with zero friction.
The geometry is symmetric with respect to the wellbore. The
half lengths are denoted as l1 and l2. Pump inviscid fluid into
the two fractures from the wellbore with the given flux Q0.
The pressure in the wellbore is uniform with the value pw

and the pressure in each fracture is also uniform with the val-
ues of p1 and p2, respectively. The inlet fluxes into the two
fractures are denoted as 2q1 and 2q2. Plane strain assumption
is adopted and the heights of the fractures are h. The mass
conservation can be given by

2hq1 + 2hq2 = Q0 (78)

At the inlets, the entry loss characterized by a coefficient ϕp

is considered and then

pw − p1 = ϕp · (2hq1)
2 (79)

pw − p2 = ϕp · (2hq2)
2 (80)

Assume there’s no stress interaction effect between the frac-
tures and then from the theoretical solution of a fracture
loaded by uniform pressure, the whole volume of the fluid in
the fracture is

V = 2 (κ + 1) πhl2

8μ
p (81)
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where κ = 3 − 4ν and μ = E/[2(1 + ν)]. Consider the
process before the propagation of the fractures and the inlet
flow rate for each fracture can be given as

qi = V̇i
2h

= ci ṗi , i = 1, 2 (82)

where ci = (κ + 1) πl2i / (8μ).
The initial conditions are given as

p1(0) = p2(0) = p0 (83)

Combining Eqs. (78), (79), (80), (82) and (83), we can
solve the equations and get the fluxes as

q1 =
[
− c1 − c2
2 (c1 + c2)

e−ηt + c1
c1 + c2

]
· Q0

2h
(84)

q2 =
[

c1 − c2
2 (c1 + c2)

e−ηt + c2
c1 + c2

]
· Q0

2h
(85)

where η = (c1 + c2) /
(
4c1c2ϕphQ0

)
. When t = 0, q1 =

q2 = Q0/ (4h) and when t → ∞, q1 = c1/ (c1 + c2) ·
Q0/ (2h), q2 = c2/ (c1 + c2) · Q0/ (2h). So we can define
the critical time tc = 1/η = 4c1c2ϕphQ0/ (c1 + c2) to char-
acterize the evolution of fluid partitioning.
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