
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 315 (2017) 348–368
www.elsevier.com/locate/cma

A phase-field approach embedded in the Theory of Porous Media for
the description of dynamic hydraulic fracturing

Wolfgang Ehlers∗, Chenyi Luo

Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569, Stuttgart, Germany

Received 11 June 2016; received in revised form 31 August 2016; accepted 30 October 2016
Available online 8 November 2016

Highlights

• Featuring fracking processes based of the TPM and a phase-field fracture model.
• Using a fully coupled FEA for the fracturing solid and the pore-fluid flow.
• Numerical examples for 2- and 3-dimensional problems.

Abstract

Hydraulic fracturing is a big issue in the exploitation of oil and gas resources as well as in the production of heat in deep
geothermal energy plants. Investigating hydraulic fracturing processes numerically by means of a finite-element analysis, one has
to address the porous solid and its pore content within a fully coupled computational approach. For this purpose, the present
article combines the well-established Theory of Porous Media with elements of fracture mechanics, especially, with the phase-field
approach to fracture, which has proven as a successful tool for the computation of fracturing processes in the field of standard solid
mechanics.

Although hydraulic fracturing is widely applied in practice, this procedure has not yet been investigated adequately by means of
a full theoretical and computational framework on the basis of a multicomponent medium tackling a porous solid skeleton and its
pore content with their mutual interaction of deformation and fracture, and fluid-driven processes both in the solid bulk and cracking
domains. Addressing these features, the article concentrates on a permeable elastic solid skeleton, where the fracturing process is
governed by brittle fracture driven either by a prescribed fluid pressure or by a prescribed fluid influx. Two- and three-dimensional
numerical examples computed by use of the coupled solver PANDAS exhibit the possibilities of this approach.
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1. Introduction

Hydraulic fracturing in porous media came into play in the late 1940s and found its application in oil and gas
industries, the exploitation of deep groundwater sources and deep geothermal energy plants. Only after 1990, it was
also applied for the exploitation of unconventional oil and gas resources such as shale gas. Hydraulic fracturing, also
known as “fracking”, is a common technique in oil and gas industries. The key point of this technique is to artificially
create a system of fissures and cracks in oil- or gas-bearing strata by means of injecting a high-pressured fluid into a
wellbore such that more dissolved or diffusive oil or gas is available in the outflow. For details about this process, the
reader is referred, for example, to Bažant et al. [1].

In contrast to its popularity in commercial applications, the relevant design and control of fracking techniques
is almost empirical, which may lead to severe consequences, such as the leakage of contaminants, high risk during
manipulation and the destabilisation of the stratum. Although the demand of systematic and theoretical knowledge
is urgent, the process of cognition is still at a nascent stage. The basic difficulty relies on the fact that two complex
phenomena, namely fracturing and porous, multi-phasic and multi-component material, have to be handled simulta-
neously during the fracking process. In general, the former involves jumps in the continuity of the basic solid material,
which might cause local instabilities of the structure and a succeeding lack of convergence of the numerical algorithm
during simulation. In addition, the latter requires a real or a virtual homogenisation strategy of the overall aggregate,
such that the microscopic structure of the solid skeleton and the pore fluids including the mutual interactions of the
solid and fluid components are properly defined on the macroscopic scale. While in fracking, cracks are initiated and
propagated by the fluid pressure, this, in turn, affects the fluid flow both in fissures and cracks and in the remainder
of the overall domain. This involves the need of a numerical algorithm, which is able to handle the multi-component
character of the overall aggregate and the cracking behaviour of the porous solid simultaneously.

In order to depict fracture in solids, Griffith [2] related its propagation to a so-called critical energy-release rate.
This energy-oriented criterion sets up the foundation of the classical theory of brittle fracture, based on which succes-
sors of Griffith, such as Irwin [3] or Rice [4], developed various approaches for specific materials. Other than brittle
fracture, materials may fail in different ways, thus leading to a distinction between brittle and ductile materials, where
a representative of the former is rock and of the latter is steel. Distinct from brittle material, ductile material undergoes
large irreversible deformations, especially, in the vicinity of the crack tip before initiation of a macroscopic crack. In
order to describe the pre-crack performance of solids more precisely, Barenblatt [5] and Dugdale [6] independently
introduced the cohesive zone model. To summarise all failure modes of solid materials, some researchers define them
as “damage” and categorise them as brittle damage, ductile damage, creeping damage and fatigue damage. The ba-
sic ideas of damage mechanisms go back to Kachanov [7] and successors and were later elaborated, for example,
by Gross [8], Lemaitre [9] and others. Damage models usually contain an additional scalar damage variable, which
reduces the stiffness of the material during its evolution. However, standard damage models suffer from the loss of
ellipticity of the governing differential equations and the strong dependency of the results on the mesh size.

All above-mentioned approaches try to describe the fracture by advancing the material model. In contrast, another
possibility was found by characterising a new internal boundary introduced by the crack. In the framework of the
Finite-Element Method (FEM), this led to the Extended Finite-Element Method (XFEM), compare Belytschko &
Black [10], Möes & Belytschko [11] and Möes et al. [12], where the crack path is traced by additional shape functions.
The advantage of this method is at the same time its drawback, since the XFEM needs to predict all possible crack
modes by properly defined additional shape functions. For increasing problems, especially, under three-dimensional
(3-d) conditions, this pre-setting of crack scenarios becomes complicated and computationally demanding.

In 1950, Ginzburg and Landau established the so-called Ginzburg–Landau theory to explain superconductivity.
As an extended form of this approach, the so-called phase-field theory was later applied to phase-transformation
problems, such as solidification, cf. Gurtin [13]. Only during the 1990s, the phase-field theory was found to be
convenient for the application to fracture problems, compare, for example, the work of Francfort & Margio [14].
Similar to the standard damage model, the phase-field theory also includes an additional scalar variable, the order
parameter, which, together with its gradient and other variables, such as strain or temperature, governs the state of the
material. The phase-field theory can also be understood as an extended energetic approach of Griffith’s theory. This
has been considered by Kuhn & Müller [15], who showed the consistency of the phase-field approach for fracture to
the classical Griffith’s theory.
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Although the application of the phase-field theory to fracture in solids is rather recent, this approach has received
immediate attention, for example, by Borden et al. [16], Miehe et al. [17] or Kuhn & Müller [15]. In their work, the
phase-field approach exhibits its outstanding performance in solving crack problems. In comparison to the XFEM and
the damage model, the advantages of applying the phase-field theory can be summarised as follows:

(1) In case that there is no mesh refinement, the use of the phase-field approach maintains the finite-element mesh
of the problem, thus not only saving computation time during the simulation but also yielding efforts when treating
the possible crack modes in the theoretical derivation and the numerical implementation.

(2) The introduction of the gradient terms in the Helmholtz free energy of the solid makes the phase-field theory
advantageous in comparison to the standard damage model, since it does not suffer from a pathological sensitivity of
the numerical results towards the size of finite elements, cf. Jirásek [18].

Applying the phase-field approach to fracturing porous media, such as rock or soil, there is not only the solid
material, but also the pore fluids have to be treated. This can be successfully done within the well-founded framework
of the Theory of Porous Media (TPM). Porous media are not only of great interest since lots of decades, but they also
exhibit a complex internal structure that has to be handled on the macroscopic scale. However, it is not astonishing
that first approaches to treat porous media occurred when coastal protection structures had to be designed, where
water had to be retained by permeable structures, such as dykes or embankments. For an historical review, compare,
for example, de Boer [19] or Ehlers [20].

Tackling porous media, two basic continuum-mechanical approaches are competing, the Biot’s approach [21–23]
dating back to 1941, and the TPM basically established by Bowen [24,25] in 1980 and the school of de Boer [26,27]
and Ehlers [28,29] starting around 1985. While the Biot’s approach was established more or less intuitively, the TPM
goes back to the roots of Rational Thermodynamics, particularly, to the Theory of Mixtures (TM), compare Truesdell
& Toupin [30] and Bowen [31]. In contrast to the intuitive procedure proposed by Biot [21], the TPM provides each
constituent of the porous medium with an individual motion function and an individual set of balance equations.
Furthermore, in contrast to continuum-mechanics of single-phasic continua, the balance equations of the constituents
of a multi-component aggregate are coupled to each other by the introduction of so-called production terms and can
be summed up over all constituents to yield the standard set of balances of continuum mechanics. Following this, each
component of the overall porous medium can be described separately, on the one hand, and is coupled to all the other
components, on the other hand. For an extended review of the TPM, the interested reader may refer to de Boer [27]
and Ehlers [29].

Treating porous media systems, it is easily concluded that coupled solid–fluid problems ask for a specific consid-
eration other than traditional approaches. For example, Darcy’s law, as one of the best known and simplest equations
in this field, describes the motion of a flow through porous media. This empirical equation is widely adopted in en-
gineering as a prescribed constitutive equation. Nevertheless, it is only valid under certain circumstances. Proceeding
from the modern approach of the TPM, one recognises from the exploitation of the entropy inequality of the overall
porous medium, which yields among other results also a constitutive relation for the fluid momentum production, and
the momentum balance of the pore fluid that Darcy’s law is not a constitutive equation but a result that only holds in
the absence of acceleration terms and vanishing frictional pore-fluid stresses. The reader who is interested in various
applications of the TPM is referred, for example, to Ehlers & Markert [32], Ehlers [33], Karajan [34] or Rempler [35]
and many others.

Scientific articles tackling fracking porous media date back, for example, to Boone & Ingraffea [36], Boone &
Detournay [37] or Detournay [38], who developed on the basis of Biot’s theory a theoretical approach obtained
under certain assumptions, such as the distribution of the pore pressure in the crack zone. In limited situations, these
assumptions may be satisfied and analytical solutions can be derived. However, in more general cases, analytical
solutions are not derivable anymore. Mikelić et al. [39,40] combined the Biot theory with the phase-field model to
trigger the propagation of a fluid-pressurised crack in a poroelastic environment. Recently, Miehe & Mauthe [41]
applied the phase-field modelling of fracture to the prediction of fluid- and moisture-driven crack propagation in
deforming porous media based on Biot’s poroelastic model, while Miehe et al. [42] set an additional threshold for the
crack evolution and related the crack propagation only to the effective-tensile-stress-induced energy. However, unlike
the TPM, Biot’s theory does not involve the balance equations of each constituent including production terms like it
is done in the TPM. As a result, the constitutive behaviour of the solid and the pore fluid is somehow ad hoc, meaning
that it is not based on thermodynamic principles, which makes it difficult to individually describe the motion of the
pore fluid and the porous solid skeleton. As a result, a transfer from Darcy-type flow to Navier–Stokes-type flow is
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awkward to be realised within the evolving crack zone. Instead of this transfer, a higher permeability is prescribed in
the crack zone, such that the fluid is observed to flow much faster.

Apart of a recent proceedings article of Markert & Heider [43], the present article firstly combines the concepts of
the TPM and the phase-field model for the description of fracture in saturated porous media. By use of this concept,
it is easy to extend the solid behaviour by phase-field variables and to couple this model to pore-fluid flow.

The present article is organised as follows. After shortly introducing the basic concepts, such as motion, volume
fraction, and effective and partial density, the kinematics and the spectral decomposition of the solid strain are
introduced on the basis of a small-strain approach followed by the balance equations of the constituents and the
Clausius–Planck inequality of the overall aggregate. Thereafter, the constitutive equations of the model together
with the evolution equation of the phase-field variable are introduced, where their thermodynamic consistency is
additionally shown. Based on this model, some benchmark examples are performed, where fracturing processes of
single- and multiphasic material are realised.

2. A brief introduction to fracturing porous media with pore content

The following description of fracturing porous media proceeds from an elastic porous solid saturated with a single
pore fluid such as water. This aggregate is described on the macroscopic scale by use of the TPM, compare, for
example, Ehlers [29], while the TPM itself combines the Theory of Mixtures (TM) with the concept of volume
fractions, compare, for example, Bowen [24,31]. As a result, the TPM makes use of a homogenisation of the solid’s
microstructure by smearing out the solid and the pore fluid over the whole domain, such that one obtains superimposed
continua with internal interactions driven by production terms.

Smearing out local microstructures towards a mean-field theory yields a loss of microstructural information of the
individual components, which, in case of cracking solids can be re-introduced by means of a so-called length-scale
parameter. Furthermore, since both components, solid and pore fluid, depend on their own constitutive variables on the
microscale and considering that a homogenisation procedure does not gain information, use is made of the principle
of phase separation (Ehlers [44]). This principle states that the free energy of an individual component of the overall
aggregate, as on the microscale, does only depend on its own constitutive variables.

2.1. The concept of volume fractions

Restricting the porous medium under consideration to two components, solid and pore fluid, the overall aggregate
ϕ is composed of the porous solid skeleton ϕS and the pore fluid ϕF , viz.:

ϕ =


α

ϕα = ϕS

ϕF . (1)

The local volume element dv of ϕ, also called bulk volume element, is composed of the local volumes dvS and dvF

of the components ϕS and ϕF . Volume fractions are defined via

nα :=
dvα

dv
with α = {S, F}, such that nS

+ nF
= 1, (2)

where (2)2 represents the so-called saturation condition. Based on (2), one introduces two different density functions
for each component, namely the real or effective density ραR and the partial or bulk density ρα given by

ραR
:=

dmα

dvα
and ρα :=

dmα

dv
. (3)

While the effective density relates the local mass element dmα to the volume element dvα of ϕα , the partial density
relates dmα to the bulk volume element dv. Obviously, the density functions are related to each other by

ρα = nαραR . (4)
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The density of the overall aggregate, also called mixture density, is defined as the sum of the partial densities of the
constituents:

ρ :=


α

dmα

dv
=


α

nαραR . (5)

In a solid–liquid aggregate, one usually assumes both constituents to be materially incompressible. While ρFR
=

const . at constant temperature is a standard assumption in hydraulics, the assumption of a materially incompressible
porous solid is based on the fact that changes in the effective solid density are negligible in comparison with variations
of the solid bulk density. As a result,

ραR
= const. (6)

as far as no temperature variations come into play. In this case, the bulk densities can only vary through variations of
the volume fractions.

2.2. Kinematic setting and spectral decomposition of strains

In a multicomponent aggregate with superimposed constituents, an individual motion function is assigned to each
constituent as

x = χα(Xα, t), (7)

where x is the current position of superimposed material points of ϕα at time t with referential positions Xα at time
t0. In a Lagrangean setting, the velocity and acceleration functions of ϕα are defined as

′
xα = vα :=

d
dt

χα(Xα, t) and
′′
xα = (vα)′α :=

d2

dt2 χα(Xα, t) (8)

and can be turned into an Eulerian setting by

′
xα = vα(x, t) and

′′
xα = (vα)′α = aα(x, t). (9)

The kinematic description of a saturated porous solid is based on a Lagrangean description of the solid material
by use of the displacement vector uS := x − XS and a modified Eulerian description of the pore fluid based on the
seepage velocity wF := vF − vS describing the fluid motion relative to the solid deformation.

Based on individual velocities of the components ϕα , one has to distinguish between individual material time
derivatives. For an arbitrary scalar quantity (·), the material time derivative reads

(·)′α =
dα(·)

d t
=
∂ (·)

∂ t
+ grad (·) vα. (10)

Furthermore, the spatial and material gradient of (·), the latter only with respect to the motion of solid skeleton, are
given by

grad (·) :=
∂ (·)

∂x
and GradS (·) :=

∂ (·)

∂XS
. (11)

If the solid material is described in a geometrically linear setting, the difference between the spatial and the referential
gradient is negligible, such that GradS (·) ≈ grad (·). Consequently, the same is true for the corresponding divergence
operators DivS (·) ≈ div (·).

By use of a geometrically linear description of the porous solid material, the solid strain εS is expressed as the
linearised version of the Green–Lagrangean strain ES . Thus, the linear strain and its temporal derivative (εS)

′
α are

given by

lin. ES = εS :=
1
2
(grad uS + gradTuS) and (εS)

′

S =
1
2
(grad vS + gradTvS). (12)
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Note in passing that (εS)
′

S ≈ DS and

DF :=
1
2
(grad vF + gradTvF ), (13)

where Dα defines the rate of deformation tensor.
As εS is a symmetric tensor with real eigenvalues λSi , a spectral decomposition yields

εS =


i

λSi nSi ⊗ nSi , (14)

where nSi are the eigenvectors corresponding to λSi . Based on (14), εS can be split into a positive and a negative part
via

ε+

S =


i

λSi + |λSi |

2
nSi ⊗ nSi and ε−

S =


i

λSi − |λSi |

2
nSi ⊗ nSi , (15)

where ε+

S only contains positive and ε−

S only negative eigenvalues. Obviously, εS = ε+

S + ε−

S .

2.3. Governing balance equations and Clausius–Planck inequality

Describing a fluid-saturated porous solid in an isothermal environment, the governing equations of the TPM are
given by the mass and momentum balances, viz.:

mass: (ρα)′α + ραdiv
′
xα = ρ̂α,

momentum : ρα
′′
xα = div Tα + ραg + p̂α.

(16)

Therein, ρ̂α and p̂α are the density and the direct momentum production terms of constituent ϕα , Tα defines the
Cauchy stresses of ϕα , and g is the gravitation vector. To ensure that the constitutive equations for the stresses and
the production terms are thermodynamically admissible, they have to fulfil the entropy inequality, which, in case of
isothermal processes, can be given in terms of the Clausius–Planck inequality

α


Tα · Dα − ρα(ψα)′α − p̂α ·

′
xα


= 0, (17)

where ψα is the Helmholtz free energy of ϕα per mass element. For details on the derivative of the complete
set of thermodynamical balances of porous-media aggregates and mixtures, the reader is referred, for example, to
Ehlers [29].

Since there is no mass transfer between a pore fluid, such as water, and a solid skeleton, such as rock or soil, the
mass production terms vanish. As a result, the direct momentum productions are constrained by

p̂S
+ p̂F

= 0. (18)

Furthermore, by use of the incompressibility constraints of solid and fluid yielding ραR
= const., the mass balance

equations can be expressed as volume balances:

(nα)′α + nαdiv
′
xα = 0. (19)

Combining this equation with the saturation condition (2)2, one obtains the incompressibility constraint of the overall
aggregate:

nSdiv vS + nF div vF + grad nF
· wF = 0. (20)

After multiplication with a Lagrange multiplier p and addition to the inequality (17), one obtains the Clausius–Planck
inequality in its final form with p as the pore pressure:

TS
+ nS pI


· DS − ρS(ψ S)′S +


TF

+ nF pI


· DF − ρF (ψ F )′F −


p̂F

− p grad nF


· wF = 0. (21)
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Given this inequality, one recovers the terms in parentheses as the extra solid and fluid stresses and the extra fluid
momentum production, viz.:

TS
E := TS

+ nS pI, TF
E := TF

+ nF pI, p̂F
E := p̂F

− p grad nF . (22)

2.4. Constitutive setting of solid skeleton and pore fluid

Based on the fact that solid and pore fluid are joint together in the TPM by means of a real or a virtual homogeni-
sation over the microstructure of the porous solid, the principle of phase or constituent separation comes into play
(Ehlers [44]) stating that the free energy of each constituent only depends on constitutive variables of the component
under consideration and not, as in the constitutive description of real mixtures, of all variables involved. As a result
and under consideration of an isothermal setting with materially incompressible constituents, the solid free energy
basically depends on the deformation gradient, while the fluid free energy is constant, viz.:

ψ S
= ψ S(FS), ψ F

= ψ F (−). (23)

While the dependency of ψ S on FS can usually be reduced to the right Cauchy–Green deformation tensor CS or the
Green–Lagrangean strain ES , the consideration of fracturing porous media induces further constitutive information,
which, by use of a phase-field approach, is given by an order parameter φS , the phase field, and its solid-material
gradient GradS φ

S :

ψ S
= ψ S(ES, φ

S, GradS φ
S) ≈ ψ S(εS, φ

S, gradφS). (24)

Note in passing that the right-hand side of this relation corresponds to the small-strain approach of the porous solid,
where ES ≈ εS and Grad S( · ) ≈ grad ( · ).

The order parameter or phase field φS with 0 ≤ φS
≤ 1 can also be interpreted as damage variable d of damage

mechanics and is used for the detection and the description of broken or cracked zones in the solid. φS has the
bounding properties

φS
=


0 for intact material,
1 for fully cracked material.

(25)

As far as the solid is not fractured (intact), φS and, as result, grad φS vanish and ψ S reduces to the standard stored
elastic energy ψ S(εS). However, taking the solid time derivative of ψ S(εS, φ

S, gradφS) yields

(ψ S)′S =
∂ψ S

∂εS
· (εS)

′

S +
∂ψ S

∂φS (φ
S)′S +

∂ψ S

∂ gradφS · grad (φS)′S . (26)

For the application of (26) to the entropy inequality (21), it is advantageous to multiply the whole equation with the
partial solid density ρS

0 = (det FS) ρ
S of the solid reference configuration at time t0. Then, a transformation of the last

term of (26) yields with the aid of the divergence theorem

ρS
0

∂ψ S

∂ gradφS · grad (φS)′S = div

(φS)′S ρ

S
0

∂ψ S

∂ gradφS


− (φS)′S div


ρS

0
∂ψ S

∂ gradφS


. (27)

Combining this result with the Clausius–Planck inequality (21), and the extra terms (22) and (23)2 results in

(det FS)
−1


σ S

E − ρS
0
∂ψ S

∂εS


· (εS)

′

S − (det FS)
−1


ρS

0
∂ψ S

∂φS − div

ρS

0
∂ψ S

∂ gradφS

 
(φS)′S

− (det FS)
−1div


(φS)′Sρ

S
0

∂ ψ S

∂ gradφS


+ TF

E · DF − p̂F
E · wF = 0. (28)
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In (28), σ S
E is the linearised solid extra stress corresponding to the second Piola–Kirchhoff stress SS

E =

(det FS)F−1
S TS

E FT −1
S . Multiplying this inequality by det FS > 0, an exploitation of (28) yields

σ S
E = ρS

0
∂ψ S

∂εS
, div


(φS)′Sρ

S
0

∂ ψ S

∂ gradφS


= 0 (29)

and the dissipation inequality

−


ρS

0
∂ψ S

∂φS − div

ρS

0
∂ψ S

∂ gradφS

 
(φS)′S + det FS


TF

E · DF − p̂F
E · wF


= 0. (30)

To fulfil the dissipation inequality, one has to introduce an evolution equation for the order parameter φS and sufficient
conditions for TF

E and p̂F
E , viz.:

(φS)′S ∝ −


ρS

0
∂ψ S

∂φS − div

ρS

0
∂ψ S

∂ gradφS


,

TF
E ∝ DF ,

p̂F
E ∝ −wF .

(31)

Given (29) and (31), (29)1 is fairly standard in small-strain porous media elasticity, while (29)2 describes the continuity
of the vectorial term in parentheses, like the continuity equation of fluid mechanics, div v = 0, describes the continuity
of the velocity field v of a single incompressible fluid.

Given this interpretation, integration of (29)2 over a volumetric domain Ω combined with the use of the Gaussian
integral theorem relating volume to surface integrals and vice versa yields

Ω
div


(φS)′S ρ

S
0

∂ψ S

∂ gradφS


dv =


∂Ω


(φS)′S ρ

S
0

∂ψ S

∂ gradφS


· n da = 0, (32)

where Ω is an arbitrary volume and ∂Ω its surface with outward-oriented unit surface normal n. In a numerical
implementation, (32) can be realised by the introduction of the following boundary condition:

∂ψ S

∂ gradφS · n = 0. (33)

The non-equilibrium conditions (31) can be satisfied by

(φS)′S = −
1
M


ρS

0
∂ψ S

∂φS − div

ρS

0
∂ψ S

∂ gradφS


,

TF
E = 2(φS)2nFµFRDF ,

p̂F
E = −(1 − φS)2

(nF )2γ FR

k F wF .

(34)

Therein, M > 0 is introduced as the mobility parameter, while µFR is the effective dynamic viscosity of the pore
fluid, γ FR

= ρFRg with g = |g| its specific weight, and k F the hydraulic conductivity, which is related to the intrinsic
permeability K S of the solid via

k F
=
γ FR

µFR K S . (35)

The combination of the order parameter φS with the dynamic viscosity µFR in (34)2 yields the viscous extra stress
TF

E to vanish in the intact porous domain but to occur in the cracked zone. At the same time, the extra momentum
production p̂F

E or the effective drag force between solid and pore fluid, respectively, vanishes in the fully cracked zone
but dominates the pore-fluid flow in the unbroken domain. This effect is in accordance with a dimensional analysis
exhibiting that the friction force div TF

E incorporated in the momentum balance of ϕF can be neglected in comparison
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with p̂F
E in case of a pure porous-media flow but is dominant in case of a Stokes flow in a bulk fluid with negligible

drag, cf. Ehlers et al. [45].
Based on (34)1, one notices that the evolution of φS only depends on the energetic changes of the porous solid. This

is reasonable since cracks can only exist in the solid skeleton and not in the pore fluid. Furthermore, in a closed porous
domain with a materially incompressible solid and a materially incompressible pore fluid with no possibility to flow
in or out of the domain, an arbitrary pore pressure would not lead to solid deformations and also not to any kind of
fracture. In this sense, hydraulic fracture is an indirect result of fluid pressure but a direct result of solid deformation.
Thus, following basic papers on phase-field fracture for a pure solid-mechanical problem by Kuhn & Müller [15] and
Miehe et al. [17], the solid Helmholtz free energy (24) is assumed as

ρS
0ψ

S(εS, φ
S, gradφS) =


(1 − φS)2 + ηS

r


ρS

0ψ
S+(ε+

S )+ ρS
0ψ

S−(ε−

S )+ Gc Γ S(φS, gradφS), (36)

where



ρS
0ψ

S+(ε+

S ) = µS (ε+

S · ε+

S )+
1
2
λS


tr εS + |tr εS|

2

2

,

ρS
0ψ

S−(ε−

S ) = µS (ε−

S · ε−

S )+
1
2
λS


tr εS − |tr εS|

2

2

,

Γ S(φS, gradφS) =
1
2ϵ
(φS)2 +

ϵ

2
gradφS

· gradφS .

(37)

In (36), the total stress energy ρS
0ψ

S per bulk volume is governed by three terms defining, firstly, the tensile energy,
secondly, the compressive energy and, thirdly, the fracture energy including the critical energy release rate Gc of brittle
fracture and the crack surface density function Γ S depending on the phase-field variable, its gradient and the internal
length-scale parameter ϵ responsible for the thickness of broken zones. The interested reader might consider Miehe
et al. [46], where a study of a diffusive crack topology is included with the width transferred from wide to narrow
with shrinking values of ϵ. Furthermore, the first term of (36) is governed by the factor [(1 − φS)2 + ηS

r ]. As a result,
it vanishes in fully broken zones apart of a viscous stress resistance governed by ηS

r , while the compressive energy
expressed by the second term of (36) is independent of the fact, whether the solid is broken or not. Finally, it should
be noted that the fracture energy mainly governs the evolution of the order parameter φS .

Given (36) and (37), the linearised effective stress tensor of the solid skeleton is obtained with the aid of (29)1
yielding

σ S
E = ρS

0
∂ψ S

∂εS

=


(1 − φS)2 + ηS

r

 
2µS ε+

S + λS


tr εS + |tr εS|

2


I


+ 2µS ε−

S + λS


tr εS − |tr εS|

2


I. (38)

Furthermore, (34)1, (36) and (37) combine to the evolution equation of φS yielding

(φS)′S =
1
M


2(1 − φS) ρS

0ψ
S+

− Gc


φS

ϵ
− ϵ divgradφS


, (39)

where (33) additionally induces the boundary condition

Gc ϵ gradφS
· n = 0. (40)

2.5. Fracturing as an irreversible process

Geomaterials, such as shale, are incapable of self-healing. Once a crack occurs in the material, this change is main-
tained and the loss of resistance in the cracked zone is not recoverable. By use of the phase-field theory, the cracking
zone is marked by the order parameter φS with φS

= 1 in the fully cracked state. The evolution of φS from 0 of the
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Table 1
Summary of governing partial differential equations.

Solid displacement–velocity relation:
(uS)

′
S = vS

Overall volume balance:

div


vS + nF wF


= 0

Solid momentum balance:
ρS(vS)

′
S = div σ S

E − nSgrad p + ρSg − p̂F
E

Fluid momentum balance:
ρF (vF )

′
F = div TF

E − nF grad p + ρF g + p̂F
E

Phase-field evolution equation:

(φS)′S =
1
M


2(1 − φS)H −

Gc
ϵ (φ

S
− ϵ2 div gradφS)



intact state towards 1 is governed by the accumulation of micro cracks. Consequently, it must fulfil the restriction

(φS)′S = 0. (41)

Based on the evolution (39), the irreversibility of the fracturing process is defined by

(φS)′S = Max


1
M


2(1 − φS) ρS

0ψ
S+

− Gc


φS

ϵ
− ϵ divgradφS


, 0


. (42)

For the numerical implementation, a history variable of the form

H = Max
t=t0

(ρS
0ψ

S+) (43)

is introduced, such that the evolution equation reads

(φS)′S =
1
M


2(1 − φS)H − Gc


φS

ϵ
− ϵ divgradφS


. (44)

Note that the consideration of the history variable H based on the so-called pseudo-elastic potential ρS
0ψ

S+ has firstly
been introduced to phase-field-driven fracture by Miehe et al. [17].

Combining Eq. (16)2, (18) and (20) yields the governing set of balance relations given in Table 1 corresponding
to the primary variables of the problem. In particular, the overall volume balance corresponds to the pore pressure
p, while the solid momentum balance corresponds to the solid displacement uS and the fluid momentum balance to
the pore-fluid velocity vF . For the reduction of the solid momentum balance from second order to first order in time,
the solid displacement–velocity relation is included and corresponds to the determination of the solid velocity vS . In
addition to these equations, which are sufficient for the handling of standard dynamical problems of saturated porous
media, the phase-field evolution equation is included in the set of Table 1 and corresponds to the phase-field variable
φS . The phase-field evolution equation, which is based on a history variable H, plays a role in the fracture-evolution
problem comparable to the role of the evolution of plastic strains in plasticity. Like the plastic strains in plasticity, one
could compute the phase field φS at the Gauss-point level during the finite-element analysis (FEA) to gain the same
result as here, where the computation of φS is included in the overall computation procedure as one of the governing
equations of the FEA. Note in passing that the same procedure as is used here can also successfully be applied in
elasto-plasticity, cf. Rempler et al. [47].

3. Numerical treatment

Together with initial and boundary conditions, the equations of Table 1 exhibit the strong form of the
initial–boundary-value problem. Multiplication of these equations with the test functions δvS , δp, δuS , δvF and δφS

yields the weak form of the governing partial differential equations, cf. Table 2. To obtain these equations, the rela-
tions of Table 1 have been multiplied with their test functions and have been integrated over the Lagrangean domain
B. Finally, integration by parts and the application of the Gaussian integral theorem yield the displayed results, where



358 W. Ehlers, C. Luo / Comput. Methods Appl. Mech. Engrg. 315 (2017) 348–368

Table 2
Weak form of the governing partial differential equations.

Solid displacement–velocity relation:

GvS =


B

[ (uS)
′
S − vS ] · δvSdv = 0

Overall volume balance:

G p =


B


div vS δp − nF wF · grad δp


dv +


S
v̄ δp da = 0

Overall momentum balance:

GuS =


B

 
ρS(vS)

′
S + ρF

[ (vF )
′
S + (grad vF )wF ]


· δuS + (σ S

E + TF
E − p I ) · grad δuS

− ( ρS
+ ρF ) g · δuS


dv −


S

t̄ · δuS da = 0

Fluid momentum balance:

GvF =


B


ρFR

[ (vF )
′
S + (grad vF )wF ] · δvF + (TFR

E − p I ) · grad δvF

−
1

nF
p grad nF

· δvF − ρFRg · δvF − p̂FR
E · δvF


dv −


S

t̄FR
· δvF da = 0

Phase-field evolution equation:

G
φS =


BS


[M(φS)′S − 2(1 − φS)H +

Gc

ϵ
φS

] δφS
+ Gcϵ gradφS

· grad δφS


dv

−


S

Gcϵ gradφS
· n δφS da = 0

the boundary terms are indicated by an additional bar. For a convenient computation of dynamic hydraulic fracturing
problems, the momentum balances of solid and fluid have been added, yielding the boundary term t̄ to exhibit the
complete load of the saturated porous solid. By this approach, the components of the model, solid and fluid, carry
as much of the external load as corresponds to their states of deformation and motion. Furthermore, the pore-fluid
equation is given with respect to the motion of the solid skeleton as a result of the modified Eulerian description.
In addition, the equation of the fluid momentum balance has been divided by nF , thus yielding the effective forms
of fluid density, extra stress, extra momentum production and boundary term. In conclusion, the boundary and extra
terms included in Table 2 read:

TFR
:=

1
nF (T

F
E − nF p I ),

TFR
E :=

1
nF TF

E = 2(φS)2µFRDF ,

p̂FR
E :=

1
nF p̂F

E = − (1 − φS)2
nFγ FR

k F wF ,

v̄ := nF wF · n,
t̄ := (σ S

E + TF
E ) n − p n,

t̄FR
:= TFR n = TFR

E n − p n.

(45)

Furthermore, note that the solid extra stress σ S
E is given by (38) and that the boundary term of the phase-field evolution

equation vanishes with respect to (40). Finally, the FEA requires a discretisation of the overall problem in space and
time. In order to satisfy standard stability requirements, such as the Ladyzhenskaya–Babuška–Brezzi (LBB) condition,
the spatial discretisation of the fully coupled problem is based on Taylor–Hood elements with quadratic approxima-
tion functions for uS , vS and vF and linear approximation functions for the remainder of primary variables, compare
Markert et al. [48]. Based on the reduction of the order of the overall momentum balance in time, the time discretisa-
tion proceeds from the backward Euler scheme within the implicit time-integration method. Based on the reduction
of the order of the overall momentum balance in time, the time discretisation proceeds from the backward Euler
scheme within the implicit time-integration method. The monolithic implicit scheme offers an unconditionally stable
solution, compare Ehlers et al. [49]. Compared to the monolithic scheme, the computational efficiency gained by the
partitioned strategy is not guaranteed for the case that differential equations are volumetrically coupled by production
terms throughout the whole domain, compare Felippa & Park [50].
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Fig. 1. Crack propagation in a single-phasic solid: (left) geometry and boundary conditions, (right) crack propagation displayed by the phase field
φS .

Based on this procedure, it has been found that the spatial discretisation of the solid displacement-velocity relation
yields some unexpected numerical inaccuracies, such that this relation is satisfied in its strong form at each Gauss
point of the FEA, thus reducing the number of the nodal degrees of freedom (DOF). The following examples are
computed by use of the numerical solver PANDAS,1 which has been developed for the solution of strongly coupled
problems based on partial differential equations (PDE).

4. Numerical examples

4.1. Verification for a single-phasic solid

The first example is used for the verification of the algorithm designed for the computation of dynamic problems
of hydraulic fracturing. Here we proceed from the geometry and boundary conditions of the single-phasic solid that
has been described in the literature as by Miehe et al. [17] and was later recalculated by Mikelić [39], cf. Fig. 1. In
contrast to [17], the material parameters of Table 3 have been taken from the dissertation thesis of Hofacker [51].
However, in both cases, the inertial and gravitational forces have been neglected. This feature is also included in
the present computation. Note in passing that this example does not demand the whole complexity of our algorithm,
since here, we could disregard the pore content and could therefore proceed from linear approximation functions for
uS . However, the coupling between the momentum balance and the phase-field evolution equation remained, while
Hofacker proceeded from a decoupled solution scheme.

The displacement at the top edge is prescribed as u2(t) = 1 × 10−5t mm, and the loading is assumed to last
for approx. 600 s such that a maximum displacement of approx. 0.006 mm is obtained. For the comparison of the
present computation with the results of Hofacker [51], we proceed from 19,488 triangular elements with only one
linear shape function for the solid displacement. The minimum mesh length of one element is about 5 × 10−3 mm
and is applied in the expected crack area in continuation of the notch. As is shown in Fig. 1, a horizontal crack is
proceeding through the material. Furthermore, the load–displacement curve for the top edge is presented in Fig. 2,
where one can observe that the computed curve fits the referential result. Marginal differences between the present
result and the result by Hofacker stem from the choice of different algorithms, which are chosen fully coupled (here)
versus staggered (Hofacker) and from the fact that Hofacker did not publish the value of the viscous stress resistance
ηS

r that she used in her calculations, such that we had to make a convenient guess.

1 Porous media Adaptive Nonlinear finite-element solver based on Differential Algebraic Systems (http://www.get-pandas.com).

http://www.get-pandas.com
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Table 3
Parameters for the single-phasic solid material.

µS 8.077 × 1010 Pa λS 12.115 × 1010 Pa Gc 2.7 × 103 N/m
ϵ 3.75 × 10−3 m ηr 8 × 10−4 M 3 × 103 Ns/m2

Fig. 2. Load–displacement curve of the top edge.

Fig. 3. Geometry and boundary conditions for the hydraulic fracturing problem.

4.2. Hydraulic fracturing in 2 dimensions

The second example simulates hydraulic fracturing of a fluid-saturated specimen under an increasing pore pressure
or a fluid injection along the notch, cf. Fig. 3. Here, the main goal is to check the feasibility of modelling crack
propagation in a pressure-driven load case. The geometry and boundary conditions are displayed in Fig. 3, while the
material parameters can be taken from Table 4.

As a result of double symmetry, the computation is carried out for the top-right quarter, and the computational
results can be complemented correspondingly. Within the FEA, this quarter is discretised by 792 quadrilateral
Taylor–Hood elements with quadratic shape functions for uS and vF and linear shape functions for p and φS . The
spatial discretisation results in a minimum element size of he

≈ 4 × 10−3 m. Based on an investigation with linear
quadrilateral elements by Hofacker [51] stating that to resolve the phase field in the numerical computation, the
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Table 4
Parameters for the biphasic model.

µS 8.077 × 1010 Pa λS 12.115 × 1010 Pa Gc 2.7 × 103 N/m
ϵ 4 × 10−3 m ηr 4 × 10−2 M 3 × 103 Ns/m2

µF 1.002 × 10−3 Pa/s nS
0 0.8 k F 1 × 10−8 m/s

ρS R
0 3 × 103 kg/m3 ρFR 1 × 103 kg/m3

0.2

0.15

0.1

0.05

0
0 0.05 0.1 0.15 0.2

Fig. 4. Contours of scaled principal shear stresses τ∗ at t = 2331 s in the vicinity of the notch.

length-scale parameter ϵ should not be smaller than he/2, ϵ has been chosen in this study to be in the same magnitude
as he. However, additional studies will demonstrate the influence of ϵ on the evolution of the phase field. As the
loading in the notch can be given by an increasing pore pressure or by a prescribed liquid influx, we will discuss both
possibilities. In the first case, a uniform but increasing pressure of p̄ = 5.5 × 104 t Pa is applied to the notch. This
leads, for example, to contours of normalised principal shear stresses

τ ∗
=

max τ
(max τ)∗

(46)

as is seen in Fig. 4 for t = 2331 s, where max τ is the largest principal shear stress and (max τ)∗ the largest principal
shear stress in the domain. This result, by the way, is in line with an old analytical solution by Sneddon [52], who
investigated stresses around a Griffith crack in an elastic medium.

With an increasing pore pressure, the notch starts to open and the crack evolves horizontally, see Fig. 5 displaying
the evolution of the phase field φS in (a)–(c) and the corresponding pore pressure in (d)–(f). After having applied the
pore pressure p̄, one observes a more or less radial pressure distribution around the notch. This also indicates the pore-
fluid flow perpendicular to the pressure isolines towards the permeable boundaries. With an evolving phase field, the
pressure isolines change their directions, and the pressure gradient along the crack is much smaller than perpendicular
to it. The reason for this behaviour is obvious and can be found in the shrinking flow resistance along the crack. This
can also be concluded from the fluid momentum balance included in Table 1, together with the constitutive equations
(34)2,3, indicating that the momentum production p̂F

E decreases while the friction force div TF
E increases with the

increasing phase field variable φS . However, note in passing that the friction force is generally quite small as a result
of small velocity gradients along the notch.

The scaled norm

v∗
= log10


|vF |

min |vF |


(47)
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a b c

d e f

Fig. 5. Phase field φS (a)–(c) and pore-fluid pressure p (d)–(e) at the different time steps.
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Fig. 6. (left) Contours of the scaled velocity norm v∗; (right) streamlines of the pore-fluid flow, both taken at t = 4831 s.

of the pore-fluid velocity together with the streamlines at t = 4831 s can be taken from Fig. 6. When computing
v∗, min |vF | is the minimum of the norm of the fluid velocity for each time step over the whole space domain.
Furthermore, it is found that the fluid at v∗

= 4 in the vicinity of the crack flows 100 times faster than at v∗
= 2

in the top-right corner, cf. Fig. 6 (left). From the streamlines of Fig. 6 (right), one recognises that the flow follows
two main directions. The one is the pore-fluid flow that starts perpendicular to the notch and the crack, and the other
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Fig. 7. Pressure distribution under a constant fluid influx at various times t .

is the bulk flow along the crack propagation. The breaking point, where the pore-fluid flow transforms towards the
bulk-fluid flow, naturally coincides with the crack tip.

Proceeding from a pressure-driven crack propagation, attention has to be paid to the point, when the crack
approaches the permeable surface. Here, the problem occurs that the pressure drop in the cracked zone is rather small,
that means, p is approximately in the order of the loading pressure p̄, while the boundary is stress-free. As a result, the
computation tends towards a singularity in the pressure field, when the crack approaches the boundary. In this regard,
Fig. 8(a) reveals a sudden drop of the resultant solid force at the top bearing at approximately t = 7000 s after having
started the loading by p̄. From this point on, the crack propagates only very slowly due to convergence problems.
To overcome this situation, the loading has been changed from pressure-driven to influx-driven by an amount of
v̄ = 0.0025 m3/(m2 s). This leads to the pressure contours of Fig. 7.

In this case, no singularity problem has to be expected due to the p0 = 0 boundary condition, since the pressure
at the tip of the notch has approximately the same value like the ambient pressure, when the crack penetrates the
boundary at t = 1781 s. Thus, this case is convenient for further parameter studies. Varying the hydraulic conductivity,
cf. Fig. 8(b), one observes a strong dependency of the resultant vertical solid force on k F , especially, during the first
200 s of the loading. Since k F governs the coupling between the solid deformation and the fluid flow through p̂F ,
its importance on the vertical solid reaction force decreases after the specimen is pumped up by water. On the other
hand, a variation of µFR does not show any influence on solid force. Since µFR governs the frictional fluid stress TF

E
in the cracked zone, it is again concluded that this effect is of minor importance for the overall fracking process. In
addition, a variation of the length-scale parameter ϵ clearly shows that this quantity is most important for the overall
computation of the problem, cf. Fig. 8(d). Since ϵ indirectly governs the thickness of the crack, it also governs the
permeability of the cracked zone. As a result, larger values of ϵ lead to an increasing thickness of the crack and, in
turn, to a faster outflow of the pumped-in water. Vice versa, smaller values of ϵ do the opposite and obviously yield
a greater portion of the pumped-in water to choose its way through the porous solid, thus inducing higher and longer
lasting high values of the vertical solid reaction force. Finally, the influence of the mobility parameter M is shown in
Fig. 8(e), where several values of M are tested over a large range from 3 × 103 to 3 × 108 N s/m2. When M is less
than 3 × 106 N s/m2, no significant deviation is found in the resultant solid reaction force. The reason is apparent if
the phase-field evolution equation is rearranged as

M(φS)′S − 2(1 − φS)H +
Gc

ϵ
(φS

− ϵ2 div gradφS) = 0 (48)

and the order of each term is compared. As the values of H and Gc/ϵ are in the range of 106–107 J/m3, the viscous
term M(φS)′S is negligible with M smaller than 106 Ns/m2. Given the case that M is large enough, an increase of M
results in a delay of crack nucleation and propagation, which yields a larger maximum and more gradual decrease of
the vertical reaction force of the solid.

4.3. Hydraulic fracturing in 3 dimensions

In this section, a fully three-dimensional fracking problem is discussed. In particular, a liquid-saturated cylindrical
specimen of permeable rock with outer radius R1 = 1 m and height H1 = 1 m is considered to be fixed between two
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Fig. 8. Vertical resultant solid reaction force at the top bearing versus time: (a) pressure-driven case, (b)–(e) volume-injection-driven case with
different parameter settings.

plates at the top and at the bottom. A borehole of radius R0 = 0.1 m and height H0 = 0.5 m is drilled into the centre of
the upper part, cf. Fig. 9, in which a rigid and impermeable pipe is injected and fixed to the porous cylinder, such that
a fluid injection can only be carried out through the bottom outlet of the pipe. The specimen is loaded by a prescribed
liquid injection rate of 0.05 m3/(m2 s) at the bottom of the borehole. The boundary conditions are chosen in such
a way that the cylinder cannot move upwards and downwards but freely expand to the sides, which are assumed to
be impermeable as is the top surface. This means that an injected fluid can only blow up the specimen or escape
through the permeable bottom surface which is subjected to a p0 = 0 boundary condition. Due to symmetry reasons
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Fig. 9. Geometry of the three-dimensional fracturing model.

Fig. 10. Crack surface in spatial, side and top view (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

and numerical efficiency, the numerical computation is set up for only one quarter of the specimen with symmetry
boundary condition at the sides. By use of 2350 quadrilateral Taylor–Hood elements, the problem results in 11,118
nodes. After having fixed the essential boundary conditions, this results in 105,636 degrees of freedom. The minimum
mesh size of he

≈ 0.01 m is chosen at the vicinity of the outlet of the pipe, while the parameters for the computation
are again taken from Table 4 as before.

Fig. 10 shows the crack surface in different views, where the red-coloured parts indicated the cracked zone with
φS > 0.9. While the spatial and the top view exhibit the extension of the cracked zone, the side view provides an
insight in the local width of the fractured area, which is constant in circumferential direction as a result of radial
symmetry. Since a fracking problem in a porous material has been considered, the liquid influx generates a pore-fluid
flux with streamlines as shown in Fig. 11. These streamlines are a result of influx and boundary conditions as well
as of the evolving cracked zone. One can observe that one part of the pore fluid flows directly downwards to the
permeable bottom boundary, while the remainder of the influx mainly follows the cracked zone as a bulk fluid and
enters the porous solid perpendicular to the cracked area, before it follows its way downwards to the bottom boundary.
At the same time, the specimen extends volumetrically as a result of pore pressure.
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Fig. 11. Stream lines of the injected pore fluid.

5. Conclusion

Embedding the phase-field approach to fracture in the TPM opens a new possibility for the study and the compu-
tation of dynamic hydraulic fracturing problems. While the TPM guarantees thermodynamic consistency of the cou-
pled behaviour of solid deformation and pore-fluid flow including the phase-field evolution, the phase-field approach
to fracture exhibits an efficient way to include fluid-injection-induced brittle fracture in the standard description of
porous media.

The present study makes use of an inclusion of the phase-field variable in the constitutive description of the solid
material and of the pore-fluid flow, such that a weakening of the solid as well as an automatic switch between pore-fluid
and bulk fluid conditions is obtained in cracked areas. Numerical benchmark problems for a single solid and for fluid-
saturated porous media under two and three spatial dimensions furthermore exhibit the capabilities of PANDAS when
multi-physical and multi-phasic problems have to considered. In this regard, it should be mentioned that PANDAS,
if necessary, can also easily be coupled to commercial tools such as Abaqus, when numerically high-dimensional or
large-scale problems have to be considered, for example, by parallel computing techniques.
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