
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
Published online 14 January 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.2481
Coupled bonded particle and lattice Boltzmann method for
modelling fluid–solid interaction
Min Wang, Y.T. Feng*,† and C.Y. Wang

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
SUMMARY

This paper presents a two-dimensional coupled bonded particle and lattice Boltzmann method (BPLBM) de-
veloped to simulate the fluid–solid interactions in geomechanics. In this new technique, the bonded particle
model is employed to describe the inter-particle movement and forces, and the bond between a pair of
contacting particles is assumed to be broken when the tensile force or tangential force reaches a certain crit-
ical value. As a result the fracture process can be delineated based on the present model for the solid phase
comprising particles, such as rocks and cohesive soils. In the meantime, the fluid phase is modelled by using
the LBM, and the immersed moving boundary scheme is utilized to characterize the fluid–solid interactions.
Based on the novel technique case studies have been conducted, which show that the coupled BPLBM
enjoys substantially improved accuracy and enlarged range of applicability in characterizing the mechanics
responses of the fluid–solid systems. Indeed such a new technique is promising for a wide range of applica-
tion in soil erosion in Geotechnical Engineering, sand production phenomenon in Petroleum Engineering,
fracture flow in Mining Engineering and fracture process in a variety of engineering disciplines. Copyright
© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dynamics of particle–fluid systems has attracted considerable attention from the community of
computational mechanics. The current interest is because of its broad range of applications in petroleum
engineering, geotechnical engineering, chemical engineering and biomechanical engineering. In solving
the problems the complexity of particle–fluid interactions remains a major challenge that cannot be
easily resolved via experiments with high cost and limited resolution. As a result computational
simulation has been employed as an alternative technique in characterizing the coupling between solid
mechanics and fluid dynamics.

In dealing with fluid dynamics, conventional finite element and finite volume methods face a great
challenge in modelling the movement and interaction of particles in fluid. Thus, efforts have been made
to develop more efficient numerical techniques in the last two decades. So far, there have been two
most commonly used techniques, i.e. (i) a coupled discrete element and computational fluid
dynamics method (DEM-CFD) and (ii) a coupled discrete element and lattice Boltzmann method
(DEM–LBM). The latter will be discussed in details in the present study.

In early 1990s, the coupled DEM-CFD approach was first proposed by Tsuji et al. [1] to investigate
fluidized bed in chemical engineering. In this model, a particle (whose size normally is smaller than a
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fluid grid) has two types of motion: translation and rotation. These motions of individual particles are
determined by Newton’s second law of motion while the overall continuum fluid field is controlled by
the continuity condition and the Navier–Stokes (N–S) equations where the local mean variables over a
computational cell are used [2–4]. For the problems considering the particle of size larger than one
grid, geometrically adapted new meshes have to be used in the model for the fluid in the vicinity of
particles. However, if there are too many particles in a system, the problem will become much more
complicated for the coupled DEM-CFD approach as the presence of neighbouring particles reduces
the space for fluid, generates a high fluid velocity gradient and, finally, yields an increased shear
stress on particle surface [5]. To resolve these issues, Hu [6] proposed a direct numerical simulation
(DNS) technique, i.e. a fine resolution of CFD for fluid flow, where the fluid field is resolved at a
scale comparable with the particle spacing and the particles are treated as discrete moving
boundaries. It is found that DNS is able to predict the hydrodynamic interactions between the fluid
and particles with highly improved accuracy [5]. On the other hand, as this technique requires to
continuously generate geometrically adapted meshes to circumvent severe mesh distortion, this is
obviously too computationally intensive, particularly for three-dimensional modelling. Thus its
efficiency needs to be further enhanced.

Considering problems encountered in DEM-CFD, Cook et al. [7] developed the coupled DEM–
LBM technique to resolve the fluid–particle systems. The technique has been validated through a
couple of two-dimensional simulations. In this approach, the discrete element method (DEM) is
adopted to trace the motions of solid particles. The LBM is utilized to model a fluid flow by tracking
the development of distribution functions of molecular assemblies [8–10]. In addition, the immersed
boundary scheme [11] was adopted to handle the interaction between moving particles and the fluid
[7, 11, 12], and the large eddy simulation (LES) based turbulence model was incorporated into
DEM–LBM to improve the accuracy of the simulation in the turbulent fluid flow [13]. Later, this
initially two-dimensional (2D) technique was further extended to a three-dimensional (3D) one and
validated through a simplified laboratory model [14–16]. The method enjoys highly improved
efficiency in handling the fluid–particle issues as it possesses the fine resolution at grain level. In
addition, DEM–LBM is naturally paralleled in numerical analyses. Previous studies showed that
DEM–LBM can find a wide range of applications in various engineering disciplines [17–24].
Nevertheless, geomaterials are commonly comprised of bonded particles where cohesive forces play
an important role in determining their mechanical characteristics. Therefore the bonded particle
method (BPM) [25] considering the cohesion forces between bonded particles should be more
practical than DEM in simulating the geomaterials such as rocks, soils and concrete.

This work aims to largely improve the accuracy in simulating fluid–particle systems by coupling the
BPM and LBM (BPLBM). This novel technique can be particularly useful for the simulations of, e.g.
shale oil exploitation process and hydraulic fracture in horizontal directional drilling. Key
computational issues, including the algorithm of BPM and the fluid–solid coupling, will be
addressed in detail. Actually, BPLBM is an extension of DEM–LBM, not only can it better simulate
the mechanical response of geomaterials where cohesion forces exist between bonded particles, but
also tackle interactions between granular particles and the fluid. In addition, BPLBM is a
mesoscopic or microscopic method, which can process fluid–particle issues at the grain-level
commonly ranging from hundreds of microns to several centimetres. Both BPM and LBM are
natural to parallelize as their collision process is local. As a result, BPLBM turns out to be even
more promising for modelling large-scale even field problems.

In the next section a brief introduction of BPM is given, which is followed by the elaboration of the
LBM and the coupling of BPM and LBM. Then, some numerical experiments including the soil
erosion and fracture process for the assessment of the coupled BPLBM are performed. Finally, it
ends with conclusions and future work on how to improve this coupling method.
2. COMPUTATIONAL METHODOLOGY

In this section, we shall introduce the framework of the coupled BPLBM. In this method, the solid
comprising bonded particles or granular particles is modelled by BPM in which the cohesion forces
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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COUPLED BPLBM AND ITS APPLICATION IN GEOMECHANICS 1385
between bonded particles are considered by the contact bond model [25] and the fluid flow is solved
using LBM with incorporation of the turbulence model. In addition, the fluid–solid interactions are
achieved through the immersed moving boundary (IMB) scheme [11] which is commonly used in
DEM–LBM.

2.1. Bonded particle method

It has been noted that the bonds existing between adjacent particles can resist both traction and shear
forces and will break because of excessive traction and/or shear forces [26, 27]. Therefore, the bonds
play a vital role in determining the critical strength and force–displacement behaviour of geomaterials.
Nowadays BPM is being extensively used for simulating construction materials i.e. soil, rock and
concrete. The concept of BPM is first proposed for rock by Potyondy and Cundall [25]. It originates
from the DEM which has been proved to be an effective numerical tool for modelling problems
consisting of granular particles. In BPM, the bond model mimicking cementation can be implemented
between the particles in contact, and the bonds are able to carry normal forces, tangential forces and
moment. When the bond force exceeds its critical value, the contact bond will break. In this case, only
the particle–particle contact forces (independent of the bond) need to be considered.

The BPM code used in this work is developed from our in-house DEM program at Swansea
University. The treatment of interactions between particles is similar to that in the DEM [28, 29]
in which particle–particle interactions are treated as a transient problem where equilibrium
state is reached when the internal forces are balanced. The Newton’s second law is utilized
to determine the translation and rotation of each particle arising from the contact forces, e.g. externally
applied forces and body forces as well as cohesive forces, while the force–displacement law is
used to update the contact forces that keep changing because of the relative motion of particles
at each contact. The dynamic behaviour is represented numerically by a time-stepping algorithm
in which the velocities and accelerations are assumed to be constant within each time step.
Because the propagation speed of disturbances is a function of the physical properties of the
discrete medium, a sufficiently small time step should be chosen so that, in one time step,
disturbances cannot propagate from a particle farther than its neighbouring particles. Therefore,
at all times the resultant forces on any particle are determined exclusively by the neighbouring
particles in contact.

The Newton’s second law governing the motion of a particle is given by

maþ cv ¼ Fc þ Ff þmg (1)

I€θ ¼ Tc þ Tf (2)

where m and I are respectively the mass and the moment of inertia of particles, c is a damping
coefficient, a and €θ are acceleration and angular acceleration, Fc and Tc are, respectively, contact
forces and corresponding torques, and Ff and Tf are hydrodynamic forces and their torques. It should
be emphasized that Fc can be either particle–particle contact forces for granular particles or cohesion
forces Fb existing between bonded particles.

2.1.1. The particle–particle contact model. The particle–particle contact force Fc has two
components, the normal contact force and tangential contact force (see Figure 1), and they are,
respectively, given by
Normal interaction laws:

Fn ¼ Knδm (3)

Coulomb friction model:

Ft ¼ �
_δt
_δt
�� �� Kt δtj j; Ktδtj j ≤ μFn

μFn; Ktδtj j > μFn

�
(4)
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a. Normal contact b. Tangential contact

Figure 1. Particle–particle contact models.
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where Kn and Kt are normal stiffness and tangential stiffness, δt and _δ_t correspond to accumulated
tangential sliding and sliding velocity, δ is the overlap of two particles. The coefficient m can be 1
and 3/2, the former is for the linear contact and the latter is for the Hertz contact model.

2.1.2. The contact bond model. The bond model used this work is referred to as the contact bond
model [25, 30]. It approximates the physical behaviour of a vanishingly small cemented-like
substance joining the two bonded particles. It can be envisioned as a pair of elastic springs (or a
point of glue) with constant and shear stiffness acting at the contact point. These two springs have
specified shear and tensile strength. The existence of a contact bond precludes the possibility of slip.
This widely accepted bond model accounts for forces acting at the contact point, but it is unable to
describe a moment applied. Thus more advanced bond model is required to simulate more
complicated mechanical behaviours [25, 31].

The contact bond is characterized by two parameters, i.e. normal bond strength (Fbn) and shear bond
strength (Fbs). If the tensile contact force equals or exceeds the normal contact bond strength, the bond
breaks, and both the normal and shear contact forces are set to be zero. Differently, when the shear
contact force is equal or greater than the shear contact bond strength, the bond breaks, but the contact
forces do not change. The contact bond model shown in Figure 2 can be described by
Normal component:

Fb
n ¼

Kb
nδ; Fb

n ≤ Fmax

0; Fb
n > Fmax

(
(5)

Tangential component:

Fb
t ¼ �

_δt
_δt
�� �� Kb

t δtj j; Kb
t δt

�� �� ≤ μFb
n

μFb
n; Kb

t δt
�� �� > μFb

n

(
(6)

whereKb
n andK

b
t are the normal stiffness and tangential stiffness for the cement, Fmax is the critical tensile

force.

2.1.3. The selection of time step. As mentioned before, the DEM is based upon the idea that the
time step chosen is so small that disturbances cannot propagate from any disc further than its
Figure 2. LB discretization and D2Q9 model: (a) a standard LB lattice and (b) D2Q9 model.
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COUPLED BPLBM AND ITS APPLICATION IN GEOMECHANICS 1387
immediate neighbours during one single time step. Currently, the critical time step can be
determined by two methods based on a linear dynamic system and wave propagation, respectively.
The former is valid for a linear system and can be obtained by the formulae below without
considering damping forces [29, 32]

tcrit ¼ 2
ffiffiffiffiffiffiffiffiffi
m=k

p
Single mass� spring systemð Þ (7)

tcrit ¼
ffiffiffiffiffiffiffiffiffi
m=k

p
Translationffiffiffiffiffiffiffiffiffiffiffiffi

I=krot
p

Rotation

(
Multiple mass � spring systemð Þ (8)

where Krot is the rotational stiffness.
By examining the cases of uniform circular and spherical particles with regular packing

configurations, O’Sullivan and Bray [33] proposed that a smaller critical time step tcrit ¼ 0:17
ffiffiffiffiffiffiffiffiffi
m=k

p
is more appropriate for three-dimensional DEM simulations involving uniform-sized particles and

tcrit ¼ 0:3
ffiffiffiffiffiffiffiffiffi
m=k

p
should be used for the two-dimensional DEM simulations involving uniform-sized

disks.
The critical time step based on wave propagation can be determined by wave speed and the diameter

of the smallest particle [34].

tcrit ¼ πRave

η

ffiffiffiffi
ρs
G

r
(9)

η ¼ 0:8766þ 0:1631ν (10)

where Rave, ρs, ν, and G are the average radius, density, Poisson’s ratio and shear modulus of the
particles, respectively.

Given the damping forces [35], the critical time step can be obtained by

tcrit ¼ 2
ffiffiffiffiffiffiffiffiffi
m=k

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

q
� ξ

� �
Single mass� spring systemð Þ (11)

where ξ ¼ c= 2
ffiffiffiffiffiffi
km

p� �Þ, or
tcrit ¼

ffiffiffiffiffiffiffiffiffi
m=k

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

q
� ξ

� �
Multiple mass� spring systemð Þ (12)

with ξ ¼ c= 4
ffiffiffiffiffiffi
km

p� �Þ.
In determining the critical time steps we should consider the time steps in both normal direction and

shear direction and the smaller one is used as the critical time step that is controlled by the smallest
particle.

In the consideration of both accuracy and stability, the time step used in DEM simulations is taken as

Δt ¼ λ � tcrit (13)

where the time step factor λ is typically chosen to be 0.1– 0.2.
In this study the critical time step is calculated by Eq. 12.

2.1.4. The general algorithm of BPM. A brief introduction to the computational procedures of the
BPM is given as follows:
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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1. A particle packing with a specified size distribution will be generated first. Then, the first contact
detection will be performed to build up a contact list for bonded particles and install bond models
into bonded particles;

2. Relax the sample until the balance state is reached. After that, the boundary conditions will be
applied for the first time-step calculation;

3. Carry out the global contact detection and work out the overlap between contact particles for the
subsequent contact force calculation;

4. Then check whether these contact pairs are on the bond contact list, if yes, use the contact bond
model to calculate the cohesion forces between bonded particles, otherwise calculate contact
forces between no bonded pairs using the particle–particle contact models;

5. Check the calculated bond forces, if the tensile force or shear force exceeds its critical value,
remove these contact pairs from the bond contact list;

6. Use Newton’s Second law to update the position and velocity of each particle;
7. Repeat Steps 3–6 till the specific time interval is exceeded and output the useful data for

postprocess.

The principal issues in BPM are the calculation of contact forces and the contact detection. The
processing of contact forces has been introduced in this paper. Detailed discussion of contact
detection algorithms can be found in the literatures [36, 37]. Considering the efficiency in terms of
CPU and memory, we used the NBS [37, 38] contact detection algorithm in this work.

2.2. Lattice Boltzmann method

The LBM is a microscopic or mesoscopic approach for fluid dynamics analysis. The primary variables
of LBM are fluid density distribution functions instead of pressure and velocity considered in the
conventional CFD. In LBM, the fluid domain is divided into regular lattices. The fluid phase is
treated as a group of (imaginary) fluid particles which are allowed to move to the adjacent lattice
nodes or stay at rest. During each discrete time step, fluid particles at individual lattice nodes move
to their immediate neighbouring lattice nodes along the given directions. Thus, at each node,
collision occurs between the fluid particles from the neighbouring nodes. The macro fluid behaviour
can be described through the statistics of the motion of fluid particles. The governing equation in
LBM is the lattice Boltzmann (LB) equation. Its counterpart in conventional CFD is the well-known
N–S equation. In particular, the N–S equation can be recovered from the LB equation under the
condition of low Mach number [39].

The LBM is originated from lattice gas automata (LGA) developed to eliminate the statistical noise.
The first LB model is called the MZ model [40], where the density distribution functions instead of
Boolean variables were employed for particle treatment. It was then simplified to the HJ model by
Higuera and Jiménez [41] through linearizing the collision operator. The technique, however, suffers
from poor numerical stability. To solve the problem, the HSB model was proposed [42]. Because
the collision operator in the HSB model is out of the collision rule in LGA, the technique is deemed
as a great progress in the model development. Two years later, the Bhatnagar–Gross–Krook (BGK)
model was proposed to simplify the collision operator in the HSB model, and it is a single
relaxation model as only one relaxation parameter is introduced in collision process [39, 43].
Subsequently, the multiple-relaxation- time (MRT) model was developed where multiple relaxation
parameters are introduced [44]. The MRT model is better than BGK model in terms of calculation
accuracy and stability but its computing is higher.

2.2.1. Bhatnagar–Gross–Krook (BGK) model. Given the computational efficiency and ease in
programming, the BGK model is adopted in this work. It can be characterised by the following LB
equation:

f i xþ eiΔt; t þ Δtð Þ � f i x; tð Þ ¼ Ω (14)

where fi is the primary variables in the LB formulation (so-called fluid density distribution functions),
and Ω is the collision operator. In the BGK model, Ω is characterised by a relaxation time τ and the
equilibrium distribution function f eqi x; tð Þ
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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Ω ¼ �Δt
τ

f i x; tð Þ � f eqi x; tð Þ½ �: (15)

To make further explanation about LBM, we will take the widely used 2D LB discretization scheme,
the so-called D2Q9 model, as an example.

The fluid domain is discretized into square lattices with side h. Particles at each node are allowed to
move to its eight immediate neighbours with different velocities ei (i = 1,2,..,8). A proportion of the
particles can rest at the node with a zero velocity e0. As shown in Figure 2(b), the nine discrete
velocity vectors in total are defined as

e0 ¼ 0; 0ð Þ;

ei ¼ C cos
π i� 1ð Þ

2
; sin

π i� 1ð Þ
2

� �
i ¼ 1;…; 4ð Þ ; (16)

ei ¼ C cos
π 2i� 9ð Þ

4
; sin

π 2i� 9ð Þ
4

� �
i ¼ 5;…; 8ð Þ :

Here C is the lattice speed and is related to lattice side, h, and time step, Δt

C ¼ h=Δt:

The central issue to LBM is to control the movement of fluid particles via the density distribution
functions. The evolution of the density distribution functions at each time step is governed by
Equation 14. The equilibrium distribution function can be defined as

f eqi ¼ ωiρ 1þ 3

C2 ei � vþ
9

2C4 ei � vð Þ2 � 3

2C2 v � v
� �

i ¼ 0;…; 8ð Þ (17)

where ρ and v are the macroscopic fluid density and velocity, respectively and ωi are the weighting
factors:

ω0 ¼ 4

9
; ω1;2;3;4 ¼ 1

9
; ω5;6;7;8 ¼ 1

36
: (18)

The macroscopic fluid density ρ and velocity v can be calculated from the distribution functions

ρ ¼ ∑
8

i¼0
f i; ρv ¼ ∑

8

i¼1
f iei : (19)

The fluid pressure is given by

P ¼ C2
Sρ (20)

where CS is termed the fluid speed of sound and is related to the lattice speed C
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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CS ¼ C=
ffiffiffi
3

p
: (21)

The kinematic viscosity, υ, of the fluid is implicitly determined by

υ ¼ 1

3
τ � 1

2

� �
h2

Δt
¼ 1

3
τ � 1

2

� �
Ch (22)

2.2.2. Turbulence modelling. Although LBM has been proved to be efficient for a variety of fluid
flow with low Reynolds number, not much work has been done on the modelling of turbulent flow
using LBM except a previous study [45]. However, the turbulent flow is common in engineering
problems, and it is one of the most active research topics in CFD.

LES is a well-known turbulence modelling approach in the engineering field, which enables one to
directly solve large spatial-scale turbulent eddies that carry the majority of the energy. The smaller-
scale eddies are described by using a subgrid model. The separation of these scales is achieved
through filtering the N–S equations, from which solutions to the resolved scales are obtained. In this
study, the widely used one-parameter Smagorinsky subgrid model [46] is adopted, where the
Reynolds stress tensor is assumed to be dependent only on the local strain rate.

A simple route to incorporate turbulence model is to directly apply the concept of LES to the LB
formulation [45]. Following this approach, the filtered form of the LB equation is expressed as

ef i xþ eiΔt; t þ Δtð Þ � ef i x; tð Þ ¼ � 1

τ�
ef i x; tð Þ � ef eqi x; tð Þ
h i

(23)

where ef i and ef eq

i represent the distribution function and the equilibrium distribution function of the
resolved scales, respectively. The effect of the unresolved scale motion is modelled through an
effective collision relaxation time scale τt. Thus the total relaxation time τ* is described by

τ� ¼ τ þ τt (24)

where τ and τt are the relaxation times corresponding to the fluid viscosity υ and the turbulence
viscosity υt, respectively. Accordingly, υ* is given by

υ� ¼ υþ υt ¼ 1

3
τ� � 1

2

� �
h2

Δt
¼ 1

3
τ þ τt � 1

2

� �
C2Δt (25)

υt ¼ 1

3
τtC2Δt (26)

where the turbulence viscosity υt is calculated in terms of the filtered strain rate tensor eSij and a filter
length scale h

υt ¼ Schð Þ2bS ; (27)

bS ¼
bQ

2ρC2
Sτ�

: (28)

In which Sc is the Smagorinsky constant, Ŝ the characteristic value of the filtered strain rate tensoreSij
and bQ the filtered mean momentum flux can be computed from second-order moments eQij, with
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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bS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i;j

eSijeSijr
; bQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑
i;j

eQij
eQij

r
:

Consequently, the turbulence relaxation time τt is obtained as

τt ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ 18 SChð Þ2 ρC4Δt

� ��1bQq
� τ

� �
: (29)

This extended LBM including turbulent flows is simple to implement and has been proved
promising for turbulence simulations [45] and was first introduced into the DEM–LBM in [13].

2.3. The fluid–solid interactions

The fluid–solid interaction is a primary issue in the fluid–particle systems especially when a large
number of particles are involved. In order to correctly model the fluid–solid interaction, the no-slip
condition must be satisfied, in which the fluid and solid should have the same velocity at the fluid–
solid interface. For a stationary particle, this no-slip condition can be easily imposed by the well-
known bounce-back rule.

2.3.1. Link-bounce-back rules for stationary particles and moving particles. The link-bounce-back
boundary condition [13, 22, 47–49] is straightforward to implement by representing the solid using
lattice nodes. Figure 3 shows the lattice discretization of a particle in fluid, where nodes interior and
exterior to the particle are the solid and fluid nodes, respectively. A link lies between the solid and
fluid nodes, and a boundary node is set in the middle of the link. The surface of the solid is
assumed to be located at the boundary node. The lattice nodes on either side of the boundary
surface are treated in an identical fashion. The bounce-back rule is applied at boundary node so that
the incoming fluid components from fluid nodes are reflected back.
Figure 3. Lattice representation of a circular solid particle.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
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f �i x; t þ Δtð Þ ¼ f i
þ x; tð Þ (30)

wherefi
+ represents the density distribution after collision, - i is the opposite direction of i.

Modifications were proposed to the original bounce-back rule by Ladd [48] so that the movement of
a solid particle can be accommodated. Although this method can guarantee momentum conservation,
not surprisingly, it results in a stepwise representation of the surface of a circular particle, which is
neither accurate nor smooth unless small enough lattice spacing is used. Furthermore, with the
movement of the particle the boundary nodes will continually change, but in an on–off way. This
will cause oscillation to the hydrodynamic forces [13].

2.3.2. Immersed boundary method (IBM). The immersed boundary method is first proposed by
Peskin [50]. The basic idea of the IBM is to treat the particle boundary as deformable body with
high stiffness. The moving boundaries are represented by a set of boundary nodes. A small
distortion of the particle boundary caused by the fluid–particle interactions will generate a force that
tends to restore the particle into its original shape. The deformation is calculated by comparing the
boundary point and the reference point that undergoes rigid body motions with particles. Then, the
N–S equations are solved over the whole fluid–particles domain. This approach has been widely
used in CFD [51].

The IBM was introduced to the LBM by Feng and Michaelides [52]. The N–S equation is replaced
by the LB equation including an external force f

f i xþ eiΔt; t þ Δtð Þ � f i x; tð Þ ¼ �Δt
τ

f i x; tð Þ � f eqi x; tð Þ½ � þ 3

2
ωi f � ei: (31)

The no-slip condition at the fluid–particle interfaces is satisfied by calculating the velocity of particle
boundary points through the interpolation of the fluid velocities on neighbouring nodes. After
calculating the hydraulic force at each boundary points, the body force f will be obtained by

Fi ¼ �κξ i (32)

where Fi and ξ i are the hydraulic force applied to the ith boundary point of the particle and its
corresponding deformation, respectively; and κ is a spring constant. Finally the hydraulic force
applied to the particle can be obtained by the summation of the force at each boundary point.

2.3.3. Immersed moving boundary (IMB). In order to solve the problems in the modified bounce-back
rule for moving particles, Noble and Torczynski [11] proposed a new boundary scheme (see Figure 4).
Figure 4. Immersed moving boundary scheme.
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This is accomplished by introducing an additional collision term, ΩS
i , for nodes covered partially or

fully by the solid. Then the collision term in the LB equation including the body force becomes

Ω ¼ �Δt
τ

1� Bð Þ f i x; tð Þ � f eqi x; tð Þ½ � þ 1� Bð ÞΔtFi þ BΩS
i (33)

where B is a weighting function that depends on the local solid ratio ε, defined as the fraction of the
node area (see Figure 8):

B ¼ ε τ � 0:5ð Þ
1� εð Þ þ τ � 0:5ð Þ (34)

when ε=0, B=0; ε=1, B=1.
The additional collision term is based on the bounce-rule for nonequilibrium part and is given by

ΩS
i ¼ f �i x; tð Þ � f i x; tð Þ þ f i

eq ρ;USð Þ � f eq�i ρ; uð Þ (35)

where US is the velocity of the solid node at time step t+Δt.

US ¼ UC þ ω�lC lC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xCð Þ2 þ y� yCð Þ2

q� �
(36)

The resultant hydrodynamic force and torque exerted on the solid can be calculated by

Ff ¼ Ch ∑
n

Bn∑
i
Ωs

i ei

� �	 

; (37)

Tf ¼ Chf∑
n

x� xCð Þ� Bn∑
i
Ωs

i eiÞ
� 


g:
	

(38)

Later this method was modified by Holdych [53]. The modified version is as follows

ΩS
i ¼ f �i x; tð Þ � f i x; tð Þ þ f i

eq ρ;USð Þ � f eq�i ρ;USð Þ: (39)

The only difference is that the solid velocity is used to calculate the equilibrium distribution for the
last term. The modified IMB was validated and proved to be better in calculating the hydrodynamic
forces [16, 21]. In addition, this scheme can recover the classic bounce-back rule for stationary
particles; while at B=0 it reduces to the standard LB equation. However, it seems that there is a
non-convergence problem with the modified IMB scheme in our study.

2.3.4. Validation of fluid–solid coupling scheme (IMB). In order to examine the feasibility of the IMB
scheme used in this work, the extensively used one single particle sedimentation in fluid was carried
out. In our simulation (see Figure 5), a water-filled tube in 2-cm diameter (X-direction) and 6-cm
height (Y-direction) is used. The fluid domain is divided into 200×600 square lattices with spacing
h=0.1mm. The kinematic viscosity and density of fluid are 1.0 ×10�6m2/s and 1000 kg/m3,
respectively. The density of the solid particle is 3000 kg/m3, and its radius is 0.125 cm. Four
boundaries of this simulation are stationary walls and thus the no-slip boundary condition is
imposed. Initially, the particle is positioned at (1 cm, 4 cm) with the static state. Because of gravity
force, the particle will fall down. The immersed moving boundary scheme is employed to resolving
the particle–fluid interaction. To demonstrate the accuracy of IMB, the same simulation using the
implicit velocity correction based IBM [54] instead of IMB scheme is carried out. The evolution of
particle velocity and hydrodynamic forces applied to the particle with respect to time are compared
in Figures 6, 7.
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Figure 5. Particle sedimentation model.
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Figure 6. Comparison of particle movement in Y direction.
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We can find that the motions of the particle simulated by two IMB and IBM schemes match very
well. At the beginning, the particle falls down as an accelerated motion because of gravity force.
After a distance it will move with a constant speed as the gravity force, hydrodynamic force and
buoyancy reach equilibrium state. It is noticed that the hydrodynamic force calculated by IMB
evolves smoothly except one point where the particle collides the bottom boundary. While, the drag
forces obtained from IB scheme fluctuate around those calculated by IMB with the development of
time.

Since the 1990s considerable effort has been made to study the fluid-moving boundary interaction
[55–57]. Because of the accuracy and computational stability of the IMB, the original IMB
technique [7, 12–14, 18, 20, 47, 58] has been widely used in DEM–LBM coupling and is adopted
in this study.
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3. RESULTS AND DISCUSSIONS

In this section, two numerical tests are carried out to demonstrate the efficiency of the coupled bonded
particle and LBM (BPLBM). The two problems considered are, respectively, a soil erosion
phenomenon under the suction pump and a hydraulic fracture process in the construction of
underground tunnel. For comparison, each case is simulated by both DEM–LBM and BPLBM. In
the latter method, cohesion or bond forces are considered and the effect of bonds on the mechanic
behaviour of the geomaterials can be explored.

In 2D simulation by combining DEM and other fluid method, like CFD and LBM, there is big issue
in pore water flow path. Because the flow paths are always blocked up by contacted spheres, it is
difficult to obtain realistic flow channels. In order to solve this problem, Boutt et al. [17] proposed a
method in which the radius of the particle will be reduced to certain degree (called effective radius)
artificially when the fluid flow is implemented. This effective hydraulic radius can be accomplished
by introducing a ratio of effective radius to the particle radius.

3.1. Case 1—Soil erosion under a suction force

In this case we try to simulate the transport of particles along a suction pipe (see Figure 8). Two
simulations of soil samples with cohesion and without cohesion forces are conducted and compared
with each other. The setup of the model is given in Figure 8. The size is 0.1 m × 0.1 m and 273
particles of different sizes are considered. The fluid domain is divided into 200 × 200 lattices with
spacing h=0.5 mm. The parameters of the fluid and solid particles are tabulated in Table I. In
addition, constant pressure boundary conditions are imposed at the bottom (ρin = 1000 kg/m3) and
the outlet (ρout = 999 kg/m3). The other boundaries are solid walls.

The snapshots of the evolution process are given in Figure 9 where the erosion process is captured
through the BPLBM technique for both granular soils and cohesive soils. Erosion can be seen only in
granular sands and the particles are gradually washed away along the suction pipe one by one; while no
particles are absorbed up in cohesive soils and the bonded particles move as a whole because of
cohesion forces between bonded particles. The difference between the two soils is apparent during
the whole process. Natural soils are commonly cohesive and can be hardly treated as granular
material using DEM. The BPM is suitable for geomaterials and the couple BPLBM is promising for
modelling the fluid–soil interactions in geotechnical engineering. The study of bond parameters will
be beneficial to the migration of soil liquefaction.

3.2. Case 2—Hydraulic fracture process in tunnelling

Case 2 simulates a hydraulic fracture process triggered by the horizontal directional drilling in
underground construction. The model with sides 0.1 m×0.1 m is shown in Figure 10 and it is
comprised of 488 bonded particles of different sizes (see Figure 11b). The fluid domain is divided
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Table I. Parameters for the fluid and solid.

Parameter Value Parameter Value

Particle density (kg/m3) 3000 Fluid density (kg/m3) 1000
Friction coefficient 0.3 Kinematic viscosity (υ) 1.0 × 106

Particle contact stiffness (N/m) 5.0 × 107 Bond contact stiffness (N/m) 2.0 × 107

Bond strength (N) 3000 Smagorinsky constant (Sc) 0.1
Contact damping ratio (ξ) 0.5 Time-step factor (λ) 0.1

Figure 8. Case 1—soil erosion under a suction force: problem setup.
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into 200×200 lattices with spacing h=0.5 mm. The parameters of the fluid and solid particles are the
same in the previous erosion simulation. A pressure pipe (ρin = 1005 kg/m3) is applied in the middle of
the left vertical wall. At the right boundary, a solid wall which is only effective for solid particles and a
pressure boundary (ρout = 1000 kg/m3) for the fluid are implemented. The other boundaries are
stationary walls. At the meantime, a corresponding numerical test with 488 granular particles is
conducted for comparison.

Figure 11 gives the states of simulation at several different time steps. It can be found that the onset
of fracture is captured in Figure 11b, which is achieved by breaking the bond model between particles
undergoing too large forces. At the beginning small cavity is formed near the pressure pipe. Then a
horizontal hydraulic fracture is formed because of high fluid pressure. With the progress of
excavation, the hydraulic fracture grows gradually. In the granular soil test, a cavity is easily formed
and it grows up quickly. Finally, a big hole can be seen near the pipe and no fracture appears. The
bond effect is apparent through the comparison of the simulations with and without the bond model.
The preliminary result demonstrates that this coupled BPLBM is promising for hydraulic fracture
study in shale oil exploitation where the experiments and conventional numerical methods have
limited resolutions.

In the above two test cases, the calculated lattice speed is the same C=600 m/s, while the maximum
physical fluid velocities are respectively vmax = 0.27 m/s and vmax = 1.44 m/s. Therefore, the maximum
Mach number and Reynolds number can be calculated from the following equations

Ma ¼ vmax
C

; (40)
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Figure 9. Lattice velocity contour of soil erosion without (a) and with (b) bonds.
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Re ¼ vmaxL

υ
: (41)

The calculated maximum Mach numbers for the soil erosion and hydraulic fracture cases are,
respectively, 4.5 × 10� 4 and 2.4 × 10� 3. The Mach numbers indicate that the fluid simulation is
reasonably accurate, as they are much smaller than 1. The corresponding Reynolds numbers are
1080 and 5760.
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Figure 10. Case 2—hydraulic fracture: problem setup.

Figure 11. Lattice velocity contour of hydraulic fracture without (a) and with (b) bonds.

1398 M. WANG, Y. T. FENG AND C. Y. WANG

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1383–1401
DOI: 10.1002/nag



COUPLED BPLBM AND ITS APPLICATION IN GEOMECHANICS 1399
4. CONCLUSIONS

This paper introduces a coupled BPLBM for the simulation of fluid–solid interactions in fluid–particle
systems. Numerical tests confirm that the coupled BPLBM technique is promising and efficient in
handling problems of soil erosion and hydraulic fracture. Compared to DEM–LBM, it enjoys
substantially improved accuracy and enlarged range of applicability in characterizing the mechanics
responses of geomaterials in which cohesion forces play an important role. Furthermore, BPLBM is
a mesoscopic or microscopic method, which can process fluid–particle issues at the grain-level
which commonly ranges from hundreds of microns to several centimetres. This characteristic is
difficult to achieve in continuum method. Because of the explicit time-stepping scheme and nature
to parallelize, BPLBM is promising for modelling large-scale even field problems using parallel
computing.

The present work only presents a 2D BPLBM technique, but the extension of 2D to 3D would be
straightforward. Although only a simple bond model has been incorporated in BPLBM, advanced
bond models able to resist moment will be developed and validated experimentally in the near future.
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