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1. Introduction of Computational Mechanics

1. Introduction of Computational Mechanics

Computational mechanics is the discipline concerned with the use

of computational methods to study phenomena governed by the principles of s’ =Y
mechanics. Before the emergence of computational science (also called ‘; \‘)
scientific computing) as a “third way” besides theoretical and ot
experimental sciences, computational mechanics was widely considered to
be a sub-discipline of applied mechanics. It is now considered to be a sub-
discipline within computational science.
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1 Finite Element Method

B Continuous problems to discrete problems

(a) The continuum is divided into a finite number of parts (elements), the
behavior of which is specified by a finite number of parameters, and

(b) the solution of the complete system as an assembly of its elements
follows precisely the same rules as those applicable to standard discrete
problems.

B The main procedure of finite element method
® FAEF: Pre-process(Bi4b3H)

, @ $Z#l|7#2: Continuum problems (Partial Differential Equations, PDEs

| ® ESHIJ7#E: Discrete problems (Algebraic Equations, AEs)
o SRf#J71%: Gaussian elimination methods etc.
® [BIRE R : Post-process(J5 AL EE)

From Continuum to Discrete
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2 Computational Solid Mechanics

2.1 Elasticity equations
2.2 Weak Forms and FE Approximation:
1-D Problems

2.1 Elasticity equations

B Basic equations

e The basic equations for the theory of elasticity are described in
terms of displacements, strains, stresses, boundary conditions,
and constitutive relations that relate the behavior between strain
and stress.

e We start by specifying each equation set for a general three-
dimensional problem in Cartesian coordinates. However, we will
also consider some two-dimensional forms. The two-dimensional
problems we consider are of three types: plane stress, plane strain
and axisymmetric cases.
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2.1 Elasticity equations

B Two-dimensional problems

a) The plane stress case. In this problem the only nonzero stresses are those in the

plane of the problem and normal to the lamina we have no stresses as shown in

Fig. 2.1a.

The plane strain case. Here all straining normal to the plane considered is

prevented. Such a situation may arise in the long prism shown in Fig. 2.1b in

which loading does not vary in the direction normal to the plane.

¢) The third and final case of two-dimensional analysis is that in which the
situation is axisymmetric. Here the plane considered is one at constant 6 in a
cylindrical coordinate system r—z—6 (Fig. 2.1c) and all components of
displacement, stress, and strain are assumed dependent on » and z only.

b

=

FIGURE 2.1 9

Two-dimensional analysis types for (a) plane stress, (b) plane strain, and (c) axisymmetry. 9

2.1 Elasticity equations

2.1.1 Displacement function
e 3D problem

X
u(x, 1) = X=43y t—time
<
e 2D problem
v plane stress and plane strain cases
ulx, y, t
u(x, 1) = (x, y, 1)
v(x, y, 1)
v axisymmetric case
ulr, z, t r
ux, t) = ( ) X =
v(r, z, 1) z
10

2.1 Elasticity equations

2.1.2 Strain matrix

e In a three-dimensional problem there are six independent

components of strain which we order and denote in matrix form by

T
€ = [‘9,\‘ Ey &z Vxy Vvz Vux ]

This form is known in the mechanics literature as Voigt notation
[8]. It is a way of writing a symmetric second order tensor in terms
of a reduced set of components. The strain is a symmetric form
where 7,7y, 7.7V, and 7,,.7y,.; thus, Voigt notation reduces nine
components to six.

e For the two-dimensional problems considered in this volume the
last two components are always zero. Thus, only four components
of & need be considered.

2.1 Elasticity equations

B Strain-displacement matrix

e For convenience in considering all three classes of two-dimensional
problems in a unified manner, we include four components of strain
in & and write them as

o

dx

A 0 —

e=| % |= dy {”‘]-0- [_) =8 u+te.

é: 0 0 :
Yay ] (

Ldy dx

for plane problems (where &, is zero for plane strain but not for plane

stress) and

= 't = 1 az !';_}:S,,u

az ar 12
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2.1 Elasticity equations

B Strain-displacement matrix

e The strains for a problem undergoing small deformations are
computed from the displacements and may be expressed in matrix
form as

e=8u

where § is a matrix of differential operators and u is the

displacement field. For the three-dimensional problem the strain-
displacement relations are given by

Ca -

— 0 0
dx

0 —
€x dy

X ]
5 0 0 — | [«
6= e | _ X 5 az v
Yay ~— Z 0 w
Yz dy v

Yex 0 - —
a ] 13

L &z ix

2.1 Elasticity equations

2.1.3 Stress matrix

e The components o,, 0, 0, are called normal stresses and 7,, 7,

o Tyo
T, Ty Ty T, are called shearing stresses

Txy = Tyxs Tyz = Tzy and Tox = Tag

Thus, similar to strain, the stresses may be written in terms of six
components that are ordered and denoted in matrix form by
g =[ox Oy Oz Tyy Tyz Tux ]T
e For two-dimensional plane problems we consider only four .
components of stress and use
o =0y Oy O; Tyy IT
In axisymmetry we define the components of stress as

o=[o, 0; 09 T; ]T

In plane stress problems we know a priori that o= 0. *

2.1 Elasticity equations

2.1.4 Equilibrium equations

e The linear momentum or equilibrium equations for the three-
dimensional behavior of a solid may be written in Cartesian
coordinates as

doy 0Tyy 0Ty 9%u
o 8-}’ + Py + b.:: =p ﬁ
0Ty day 0Ty 9%
Tox oy oz T P
0Ty;  9Ty;  do; 92w

b;=p

+ —
dx dy dz ar?

15

2.1 Elasticity equations

2.1.4 Equilibrium equations
e The equilibrium equations in Cartesian coordinates may be
written in a matrix Voigt form as
STe +b=pii

§ is the same differential operator, b is the vector of body forces
given as

b={[by by b.]"

p is the mass density per unit volume and ii = a%u/ds> is the
acceleration vector.
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2.1 Elasticity equations

2.1.4 Equilibrium equations

e The linear momentum or equilibrium equations for the two-
dimensional plane problems behavior of a solid may be written in
Cartesian coordinates as

00y  OTyy 9%u
—_— 4 — 4+ b, =p—
ax oy TP
Ity oy a%v

~ Y b= p o
ax oy TP

and in matrix form

S};a +b=pi

2.1 Elasticity equations

2.1.4 Equilibrium equations

e The linear momentum or equilibrium equations for the two-
dimensional axisymmetric problems behavior of a solid may be
written in Cartesian coordinates as

do, O —0p 9T, a2u
T = —
ar T ThrEraa
0Ty, + do. b = v
ar Tz TP

and the differential operator on equilibrium in matrix form

P 1) o -1 2
| \or T >

d ad
0 — 0 —
az ar 18

2.1 Elasticity equations

2.1.5 Boundary conditions(BCs)

e Displacement boundary conditions are specified at each point of the boundary

I, as
u=u(x, 1)
where U are known values and x are points on the boundary

e Traction boundary conditions are specified for each point of the boundary t
and are given in terms of stresses by
t=GTo =t(x, 1)

in which for three-dimensional problems GT is the matrix, and in two-
dimensional plane problems GT reduces to G}:

ny 00 ny 0 n: 0 0
G'=|o0 ny 0 ny n: 0 Gﬁ = [’:)‘ .0 ’:" ]
0 0 n. 0 ny ny fty Mt 19

19

2.1 Elasticity equations

2.1.6 Stress and strain relations: Elasticity matrix

e Using this hypothesis the stress-strain equations for a linearly elastic
material may be expressed by
o =De
or by
e=D"'o

The D matrix is known as the elasticity matrix of moduli and the D!
matrix as the elasticity matrix of compliances.

20
20
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2.1 Elasticity equations

B Isotropic materials

e In cartesian coordinates system

£y I —v —v 0 0 0 Ty
£y —v 1 —» 0 0 0 oy
el _1f-v - 1 0 0 0 o
o[ E|l 0 0 0 2014w 0 0 Tyy
Yoe 0 0 0 0 2(1 +v) 0 -
Yo 0 0 0 0 0 2(1+v) Toy

Inverting to obtain the appropriate elasticity matrix of moduli yields the

2.1 Elasticity equations

result
(1= v v 0 0 0
voo(l=v) v 0 0 0
b E v v (1= 0 0 0
=d 0 0 0 (1-2v)/2 0 0 d = (1+v)(1-2v)
0 0 0 0 (1—2v)/2 0 eyl
0 0 0 0 0 (1-2v)/2 2

B Jsotropic materials

e Two-dimensional problems in cartesian coordinates system

2.1 Elasticity equations

go -—--> b,
X
ey . doy 9%u -
e Equilibrium equations: Fr by=p Tl
; p

B One-dimensional form of elasticity

o Constitutive equation: o= Eé,
[ ]

. . . du
e Strain-displacement equation: &x = ™

n, is the unit :
outward normal |

Boundary conditions

=i or ty=1I =nyo, onx =a,b

23
23

£y I —v —v 0 oy
e | _ | —p I —v 0 oy
£ T E | =-v —v 1 0 o
Yoy 0 0 020+v | |1,
ay 1 1 0 0 Ex
v’ The plane stress case oy __E voloo 0 Ey
. 1 =17 0 0 0 0 £,
Tay 0 0 0 (1=-w)/2 Yxy
. ay (1—=v) 1 1 0 Ex
v’ The plane strain case oy | _E voo(l=v) v 0 £y
o | d v v (1—wv) 0 £
Txy 0 0 0 (1 =2v)/2 Yy
22
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