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课程内容

1. 计算固体力学绪论

2. 微分方程的等效积分弱形式

3. 弹性力学问题的有限元求解格式

1.  Introduction of Computational Mechanics
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Computational mechanics is the discipline concerned with the use
of computational methods to study phenomena governed by the principles of
mechanics. Before the emergence of computational science (also called
scientific computing) as a “third way” besides theoretical and
experimental sciences, computational mechanics was widely considered to
be a sub-discipline of applied mechanics. It is now considered to be a sub-
discipline within computational science.

4

 Numerical methods in computational mechanics 

作为力学分支的计算力学，发展了有限元 (finite element

method, FEM)、离散元(discrete element method, DEM) 、有限

差分法 (finite difference method, FDM)、无网格法 (mesh-less

method, MLM)、扩展有限元法(extended finite element method,

XFEM)、边界元(boundary element method, BEM)、半解析方法

(semi-analytic methods）等理论和方法，为虚拟仿真提供了工具。

计算固体力学(Computational Solid Mechanics)是计算力学下

的固体力学研究分支。

1.  Introduction of Computational Mechanics
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1  Finite Element Method
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建立模型: Pre-process(前处理)
控制方程: Continuum problems (Partial Differential Equations, PDEs)

离散方程: Discrete problems (Algebraic Equations, AEs)

求解方法: Gaussian elimination methods etc.
展示结果: Post-process(后处理)

 The main procedure of finite element method

(a) The continuum is divided into a finite number of parts (elements), the 
behavior of which is specified by a finite number of parameters, and

(b) the solution of the complete system as an assembly of its elements 
follows precisely the same rules as those applicable to standard discrete 
problems.

 Continuous problems to discrete problems

From Continuum to Discrete

1. 计算固体力学绪论

2. 微分方程的等效积分弱形式

3. 弹性力学问题的有限元求解格式

课程内容

2.1  Elasticity equations

2.2  Weak Forms and FE Approximation: 

1-D Problems

2  Computational Solid Mechanics
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2.1  Elasticity equations

 The basic equations for the theory of elasticity are described in
terms of displacements, strains, stresses, boundary conditions,
and constitutive relations that relate the behavior between strain
and stress.

 We start by specifying each equation set for a general three-
dimensional problem in Cartesian coordinates. However, we will
also consider some two-dimensional forms. The two-dimensional
problems we consider are of three types: plane stress, plane strain
and axisymmetric cases.

 Basic equations 
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 Two-dimensional problems

2.1  Elasticity equations

a) The plane stress case. In this problem the only nonzero stresses are those in the
plane of the problem and normal to the lamina we have no stresses as shown in
Fig. 2.1a.

b) The plane strain case. Here all straining normal to the plane considered is
prevented. Such a situation may arise in the long prism shown in Fig. 2.1b in
which loading does not vary in the direction normal to the plane.

c) The third and final case of two-dimensional analysis is that in which the
situation is axisymmetric. Here the plane considered is one at constant θ in a
cylindrical coordinate system r−z−θ (Fig. 2.1c) and all components of
displacement, stress, and strain are assumed dependent on r and z only.
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2.1.1  Displacement function

2.1  Elasticity equations

 3D problem

 2D problem

 plane stress and plane strain cases

 axisymmetric case

t—time
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2.1.2  Strain matrix

2.1  Elasticity equations

 In a three-dimensional problem there are six independent
components of strain which we order and denote in matrix form by

This form is known in the mechanics literature as Voigt notation
[8]. It is a way of writing a symmetric second order tensor in terms
of a reduced set of components. The strain is a symmetric form
where γxy=γyx, γyz=γzy, and γzx=γxz; thus, Voigt notation reduces nine
components to six.

 For the two-dimensional problems considered in this volume the
last two components are always zero. Thus, only four components
of ε need be considered.
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 Strain-displacement matrix

2.1  Elasticity equations

 For convenience in considering all three classes of two-dimensional
problems in a unified manner, we include four components of strain
in ε and write them as

for plane problems (where εz is zero for plane strain but not for plane
stress) and
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 Strain-displacement matrix

2.1  Elasticity equations

 The strains for a problem undergoing small deformations are
computed from the displacements and may be expressed in matrix
form as

where S is a matrix of differential operators and u is the
displacement field. For the three-dimensional problem the strain-
displacement relations are given by
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2.1.3  Stress matrix

2.1  Elasticity equations

 The components σx, σy, σz are called normal stresses and τxy, τyx,
τyz, τzy, τxz, τzx are called shearing stresses

Thus, similar to strain, the stresses may be written in terms of six
components that are ordered and denoted in matrix form by

 For two-dimensional plane problems we consider only four
components of stress and use

In axisymmetry we define the components of stress as

In plane stress problems we know a priori that σz= 0.
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2.1.4  Equilibrium equations

2.1  Elasticity equations

 The linear momentum or equilibrium equations for the three-
dimensional behavior of a solid may be written in Cartesian
coordinates as
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2.1.4  Equilibrium equations

2.1  Elasticity equations

 The equilibrium equations in Cartesian coordinates may be
written in a matrix Voigt form as

S is the same differential operator, b is the vector of body forces
given as

ρ is the mass density per unit volume and is the
acceleration vector.
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2.1.4  Equilibrium equations

2.1  Elasticity equations

 The linear momentum or equilibrium equations for the two-
dimensional plane problems behavior of a solid may be written in
Cartesian coordinates as

and in matrix form
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2.1.4  Equilibrium equations

2.1  Elasticity equations

 The linear momentum or equilibrium equations for the two-
dimensional axisymmetric problems behavior of a solid may be
written in Cartesian coordinates as

and the differential operator on equilibrium in matrix form
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2.1.5  Boundary conditions(BCs)

2.1  Elasticity equations

 Displacement boundary conditions are specified at each point of the boundary
as

where     are known values and x are points on the boundary

 Traction boundary conditions are specified for each point of the boundary t
and are given in terms of stresses by

in which for three-dimensional problems GT is the matrix, and in two-
dimensional plane problems GT reduces to
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2.1.6  Stress and strain relations: Elasticity matrix

2.1  Elasticity equations

 Using this hypothesis the stress-strain equations for a linearly elastic 
material may be expressed by

or by

The D matrix is known as the elasticity matrix of moduli and the D−1

matrix as the elasticity matrix of compliances.
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2.1  Elasticity equations

 In cartesian coordinates system

Inverting to obtain the appropriate elasticity matrix of moduli yields the 
result

 Isotropic materials 
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2.1  Elasticity equations

 Two-dimensional problems in cartesian coordinates system

 Isotropic materials 

 The plane stress case

 The plane strain case
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 Equilibrium equations:

 Constitutive equation:


 Strain-displacement equation:

 Boundary conditions
nx is the unit 
outward normal

Strong form

x
o bx

2.1  Elasticity equations

 One-dimensional form of elasticity

The EndThe End
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