

1. Introduction of Computational Mechanics

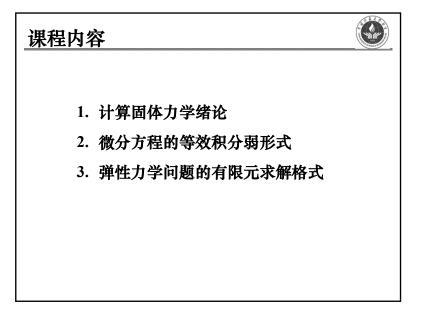
Computational mechanics is the discipline concerned with the use of computational methods to study phenomena governed by the principles of mechanics. Before the emergence of computational science (also called scientific computing) as a "third way" besides theoretical and experimental sciences, computational mechanics was widely considered to be a sub-discipline of applied mechanics. It is now considered to be a subdiscipline within computational science.

计算力学。

🖃 本词条由"科普中国"百科科学词条编写与应用工作项目 审核。

3

计算力学(computational mechanics)是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题 的一门新兴学科。它模贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。 计算力学的应用范围已扩大到固体力学、岩土力学、水力学、流体力学、生物力学等领域。计算力学主要进行数值方法的研究, 如对有限差分方法、有限元法作进一步深入研究,对一些新的方法及基础理论问题进行探索等等。计算力学模贯各个力学分支, 为它们服务,促进它们的发展,同时也受它们的影响。

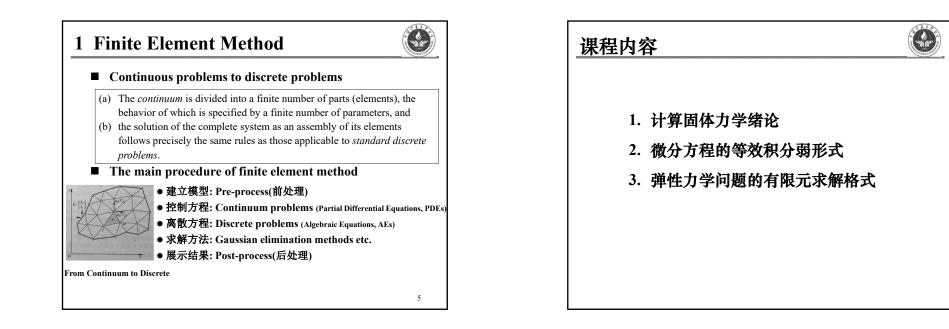


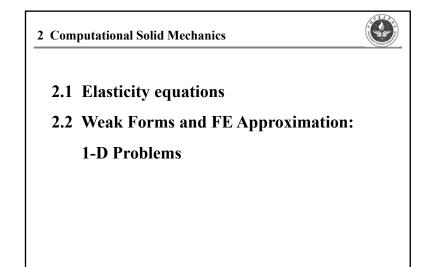
1. Introduction of Computational Mechanics

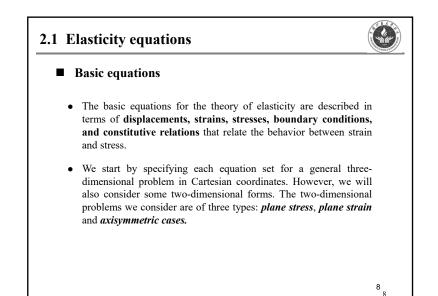
Numerical methods in computational mechanics

作为力学分支的计算力学,发展了有限元(finite element method, FEM)、离散元(discrete element method, DEM)、有限 差分法(finite difference method, FDM)、无网格法(mesh-less method, MLM)、扩展有限元法(extended finite element method, XFEM)、边界元(boundary element method, BEM)、半解析方法 (semi-analytic methods)等理论和方法,为虚拟仿真提供了工具。 计算固体力学(Computational Solid Mechanics)是计算力学下 的固体力学研究分支。

1



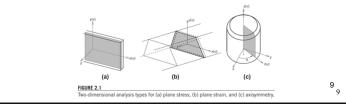




2.1 Elasticity equations

Two-dimensional problems

- a) The *plane stress* case. In this problem the only nonzero stresses are those in the plane of the problem and normal to the lamina we have no stresses as shown in Fig. 2.1a.
- b) The *plane strain* case. Here all straining normal to the plane considered is prevented. Such a situation may arise in the long prism shown in Fig. 2.1b in which loading does not vary in the direction normal to the plane.
- c) The third and final case of two-dimensional analysis is that in which the situation is *axisymmetric*. Here the plane considered is one at constant θ in a cylindrical coordinate system $r-z-\theta$ (Fig. 2.1c) and all components of displacement, stress, and strain are assumed dependent on *r* and *z* only.



2.1 Elasticity equations

11 11

2.1.2 Strain matrix

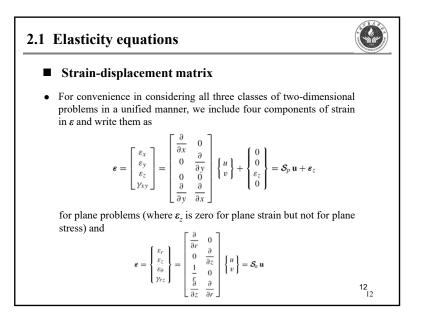
• In a three-dimensional problem there are six independent components of strain which we order and denote in matrix form by

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_x & \varepsilon_y & \varepsilon_z & \gamma_{xy} & \gamma_{yz} & \gamma_{zx} \end{bmatrix}^{\mathrm{T}}$$

This form is known in the mechanics literature as Voigt notation [8]. It is a way of writing a symmetric second order tensor in terms of a reduced set of components. The strain is a symmetric form where $\gamma_{xy} = \gamma_{yx}$, $\gamma_{yz} = \gamma_{zy}$, and $\gamma_{zx} = \gamma_{xz}$; thus, Voigt notation reduces nine components to six.

• For the two-dimensional problems considered in this volume the last two components are always zero. Thus, only four components of *e* need be considered.

2.1 Elasticity equations 2.1.1 Displacement function • 3D problem $u(\mathbf{x}, t) = \begin{cases} u(x, y, z, t) \\ v(x, y, z, t) \\ w(x, y, z, t) \end{cases} \quad \mathbf{x} = \begin{cases} x \\ y \\ z \end{cases} \quad t \text{--time}$ • 2D problem • 2D problem • plane stress and plane strain cases $u(\mathbf{x}, t) = \begin{cases} u(x, y, t) \\ v(x, y, t) \end{cases}$ • axisymmetric case $u(\mathbf{x}, t) = \begin{cases} u(r, z, t) \\ v(r, z, t) \end{cases} \quad \mathbf{x} = \begin{cases} r \\ z \end{cases}$ ¹⁰



4

2.1 Elasticity equations

■ Strain-displacement matrix

• The strains for a problem undergoing small deformations are computed from the displacements and may be expressed in matrix form as

 $\boldsymbol{\varepsilon} = \boldsymbol{\mathcal{S}} \, \mathbf{u}$

where S is a matrix of differential operators and \mathbf{u} is the displacement field. For the three-dimensional problem the strain-displacement relations are given by

$$\boldsymbol{\varepsilon} = \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{zx} \\ \gamma_{zx} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{cases} u \\ v \\ w \end{cases}$$
13

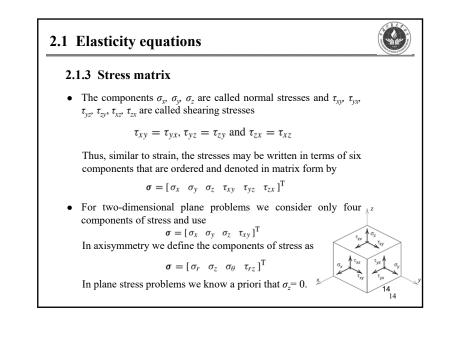
2.1 Elasticity equations

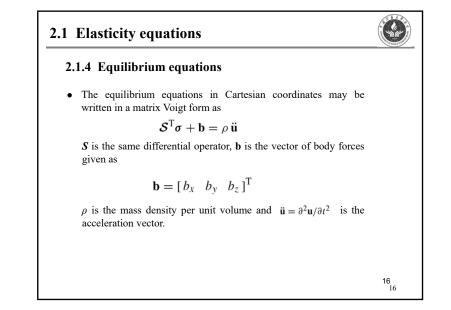
2.1.4 Equilibrium equations

• The linear momentum or equilibrium equations for the threedimensional behavior of a solid may be written in Cartesian coordinates as

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + b_x = \rho \frac{\partial^2 u}{\partial t^2}$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + b_y = \rho \frac{\partial^2 v}{\partial t^2}$$
$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + b_z = \rho \frac{\partial^2 w}{\partial t^2}$$

15 15





2.1 Elasticity equations

17 17

2.1.4 Equilibrium equations

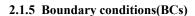
• The linear momentum or equilibrium equations for the twodimensional plane problems behavior of a solid may be written in Cartesian coordinates as

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + b_x = \rho \frac{\partial^2 u}{\partial t^2}$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = \rho \frac{\partial^2 v}{\partial t^2}$$
matrix form

$$\boldsymbol{\mathcal{S}}_{\boldsymbol{\rho}}^{\mathrm{I}}\boldsymbol{\sigma} + \mathbf{b} = \boldsymbol{\rho}\,\ddot{\mathbf{u}}$$

2.1 Elasticity equations

and in



• Displacement boundary conditions are specified at each point of the boundary Γ_u as

$$\mathbf{u} = \bar{\mathbf{u}}(\mathbf{x}, t)$$

where $\mathbf{\bar{u}}$ are known values and *x* are points on the boundary

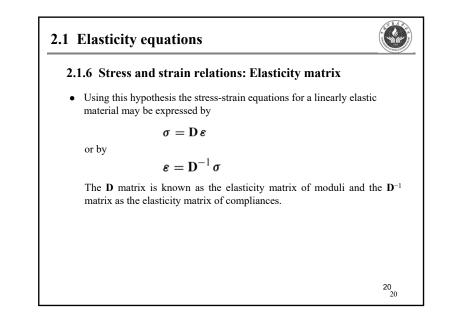
• Traction boundary conditions are specified for each point of the boundary **t** and are given in terms of stresses by

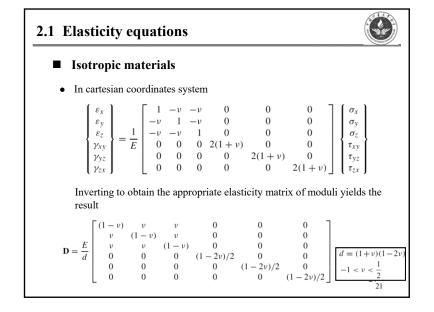
$$\mathbf{t} = \mathbf{G}^{\mathrm{T}} \boldsymbol{\sigma} = \bar{\mathbf{t}}(\mathbf{x}, t)$$

in which for three-dimensional problems \mathbf{G}^T is the matrix, and in twodimensional plane problems \mathbf{G}^T reduces to \mathbf{G}^T_n

$\mathbf{G}^{\mathrm{T}} = \begin{bmatrix} n_{x} \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0\\ n_y\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\\ n_z \end{array}$	n_y n_x 0	$0\\n_z\\n_y$	$\begin{bmatrix} n_z \\ 0 \\ n_x \end{bmatrix}$	$\mathbf{G}_p^{\mathrm{T}} = \begin{bmatrix} n_x & 0 & 0 & n_y \\ 0 & n_y & 0 & n_x \end{bmatrix}$	19 19
							1)

2.1 Elasticity equations
2.1.4 Equilibrium equations
• The linear momentum or equilibrium equations for the two- dimensional axisymmetric problems behavior of a solid may be written in Cartesian coordinates as
$\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} + \frac{\partial \tau_{zr}}{\partial z} + b_r = \rho \frac{\partial^2 u}{\partial t^2}$ $\frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + b_z = \rho \frac{\partial^2 v}{\partial t^2}$
and the differential operator on equilibrium in matrix form
$ \bar{\boldsymbol{\mathcal{S}}}_{a}^{\mathrm{T}} = \begin{bmatrix} \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) & 0 & -\frac{1}{r} & \frac{\partial}{\partial z} \\ 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial r} \end{bmatrix} $ ¹⁸





Isotropic materials	
• Two-dimensional probl	ems in cartesian coordinates system
$\begin{cases} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \end{cases} = \frac{1}{E}$	$\left[\begin{array}{cccc} 1 & -\nu & -\nu & 0 \\ -\nu & 1 & -\nu & 0 \\ -\nu & -\nu & 1 & 0 \\ 0 & 0 & 0 & 2(1+\nu) \end{array}\right] \left\{\begin{array}{c} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \end{array}\right\}$
✓ The plane stress case	$\begin{cases} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \end{cases} = \frac{E}{(1-v^2)} \begin{bmatrix} 1 & v & 0 & 0 \\ v & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & (1-v)/2 \end{bmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \end{cases}$
✓ The plane strain case	$ \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \end{cases} = \frac{E}{d} \begin{bmatrix} (1-\nu) & \nu & \nu & 0 \\ \nu & (1-\nu) & \nu & 0 \\ \nu & \nu & (1-\nu) & 0 \\ 0 & 0 & 0 & (1-2\nu)/2 \end{bmatrix} \begin{bmatrix} \varepsilon \\ \varepsilon \\ \varepsilon \\ \gamma_{y} \end{bmatrix} $

2.1 Elasticity equations					
One-dimensional form of elasticity					
• Equilibrium equations: $\frac{\partial \sigma_x}{\partial x} + b_x = \rho \frac{\partial^2 u}{\partial t^2}$ Strong form					
• Constitutive equation: $\sigma_x = E \varepsilon_x$					
• Strain-displacement equation: $\varepsilon_x = \frac{\partial u}{\partial x}$					
• Boundary conditions $u = \overline{u}$ or $t_x = \overline{t}_x = n_x \sigma_x$ on $x = a, b$					
23 23					

