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课程内容

1. 计算固体力学绪论

2. 微分方程的等效积分弱形式

3. 弹性力学问题的有限元求解格式

2.1  Elasticity equations

2.2  Weak Forms and FE Approximation: 

1-D Problems

2  Computational Solid Mechanics
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2.2  Weak form of equivalent integration for differential equations
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 Strong Form: governing equations (Partial Differential Equations, PDEs)

 Weak Form:
(1) Multiply each equation by an appropriate arbitrary function.
(2) Integrate this product over the space domain of the problem.
(3) Use integration by parts to reduce the order of derivatives to

a minimum.
(4) Introduce boundary conditions if possible.

An arbitrary function is one that can take any value we can
imagine. It can be a polynomial(多项式), a trigonometric function
(三角函数), a Dirac delta function, or any other function.
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 Displacemet:                 strain:                 stress:

 Geometric equation:

 Constitutive equation:

 Equilibrium equation:


 Boundary conditions: nx is the unit 
outward normal 
vector

x
o bx

x=a x=b

2.2  Weak form of one-dimensional elasticity problems

 One-dimensional elastic cantilever beam

Strong form
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 Weak form of equilibrium equation

 We start by introducing an arbitrary function w(x) that is defined in

the domain described by the interval a < x < b. Multiplying the

equilibrium equation by this function we may write

 Integrate this product over the space domain of the problem

2.2  Weak form of one-dimensional elasticity problems
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 Weak form of equilibrium equation

 Integrate the stress term by parts as

 Where  is the boundary of  and nx is the outward pointing normal

to the boundary. The boundary term may be expressed in terms of the

traction as

where we have noted nx(b) = 1 and nx(a) = −1.

2.2  Weak form of one-dimensional elasticity problems
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 Weak form of equilibrium equation

 We also again introduce the notation that u is a boundary where             ,  

t is a boundary where             , and the total boundary is =u∪t. 

With this notation we can write the weak form for equilibrium as

Weak form

2.2  Weak form of one-dimensional elasticity problems
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 Weak form of equilibrium equation

 We also again introduce the notation that u is a boundary where             ,  

t is a boundary where             , and the total boundary is =u∪t. 

With this notation we can write the weak form for equilibrium as

Weak form

2.2  Weak form of one-dimensional elasticity problems
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 Weak form of equilibrium equation

 We also again introduce the notation that u is a boundary where             ,  

t is a boundary where             , and the total boundary is =u∪t. 

With this notation we can write the weak form for equilibrium as

Weak form

2.2  Weak form of one-dimensional elasticity problems
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2.2  Finite element computation based on weak form
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 To construct an approximate solution we express the displacement 
u(x) in terms of a set of specified functions multiplied by unknown 
parameters.

 In a similar way, we write the arbitrary function w(x) in terms of 
an equal number of specified functions and arbitrary parameters. 
These may be expressed as

In the above form we assume that both   and ψm(x) are zero at 
all locations where the boundary DISPLACEMENT is specified. 

 Galerkin method
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 The function          is then specified as any function that satisfies the 

DISPLACEMENT boundary condition. For example, if the 

displacement must satisfy                  on the domain 0 < x < L, this 

function may be taken as

2.2  Finite element computation based on weak form
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 Galerkin method

 An approximate Galerkin solution for the elasticity problem

2.2  Finite element computation based on weak form
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stiffness matrixload matrix

2.2  Finite element computation based on weak form
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 Since the parameters wm are arbitrary, the expression multiplying 

each one must be zero. This leads to the set of equations:

 The original problem of partial differential equations has been 

reduced to a set of algebraic equations.

2.2  Finite element computation based on weak form
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 Matrix form of stiffness equation

 Formal solution

 Displacement and stress solution

2.2  Finite element computation based on weak form
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 Example 3.1. Solutions of Galerkin method for 
one-dimensional elastic cantilever beam

 As an example we consider a 

static problem with length 10 

units and E = 1000. Figure 3.1 

shows the problem to solve. 

 Loading

 Boundary conditions

2.2  Finite element computation based on weak form

 Figure 3.1 One-dimensional elastic 
cantilever beam in Example 3.1.

18
18

 Weak form 

 consider an approximate solution

2.2  Finite element computation based on weak form
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 Weak form 

2.2  Finite element computation based on weak form
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 For example, M=N=2, the stiffness matrix and load matrix are given by

 Matrix form of stiffness equation

2.2  Finite element computation based on weak form



2021-11-28

6

21
21

 Formal solution

 Displacement and stress solution

2.2  Treatments on boundary conditions
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 Similarly, we get the solutions under different number of terms 

 Discard terms that do not contribute to the solution.

 Does not lead to convergent behavior.

2.2  Finite element computation based on weak form

 Table 3.1 Parameters for one-dimensional elastic 
cantilever beam in Example 3.1.
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 Displacement and stress solution 
1. The displacement at the free end is the same no matter how many terms we use. This

often happens in one-dimensional static problems but, unfortunately, is seldom true in
higher dimensional problems.

2. The solution for stress converges more slowly than that for the displacements;
3. however, once again we observe that some points are more accurate than others. These

we shall call super-convergent points and these points play an important role in our
later discussion on error estimates and adaptive refinement of solutions.

2.2  Finite element computation based on weak form

 Figure 3.2 Displacement and stress solutions in Example 3.1 based on 
Galerkin method using N-terms solutions: (a) displacement and (b) stress.

24
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 A more convenient method to construct the approximating functions

and ψm are obtained by dividing the domain to be analyzed into small

regular shaped regions. For example, we can divide the one-dimensional

region between a and b into a set of “M” small finite segments by

defining a set of N points xi such that

For a one-dimensional problem we can let each increment define a finite 

element domain (or more simply, an element) and the set of points define 

the nodes (finite element mesh or mesh).

2.2  Finite element computation based on weak form

 Finite element computation
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 A simple set of continuous polynomial approximating functions

2.2  Finite element computation based on weak form

 Figure 3.3 One-dimensional finite element approximation for      : 
(a) functions and (b) derivatives.

C0 function since only the function 
is continuous in x, whereas the first 
derivative is only piecewise 
continuous with the discontinuities 
located at the nodes.
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 Integrals over each element in the weak form functional

Considering any interval [xi, xi+1], we note that each interval is defined
by the same two local functions N1 and N2. We call these the shape
functions (形函数) for the element. To simplify the notation we also
define local nodal coordinates on each element as and .

2.2  Finite element computation based on weak form

 Figure 3.4 One-dimensional finite element shape functions: (a) functions and 
(b) derivatives.
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 Displacements and arbitrary weight function

 Local coordinate system

e

2.2  Finite element computation based on weak form
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 Weak form in global domain

 Weak form in each element

2.2  Finite element computation based on weak form



2021-11-28

8

29
29

 Each element can be evaluated as element stiffness matrix and load 

matrix

 Element stiffness matrix and load matrix

Ee and bx are constant

2.2  Finite element computation based on weak form
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2.2  Global assembly from one-dimensional elements
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 In the one-dimensional beam model, N-1 elements (“M” small finite 

segments) and N nodes are used

 Figure 3.5 Element and node numbers of one-dimensional problem.
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2.2  Global assembly from one-dimensional elements

31

 Then for each element we define the relationship of the local nodes to 

the global node number

 Table 3.2 Local to global node numbering for two-end element for 
one-dimensional elastic beam.

32

2.2  Global assembly from one-dimensional elements
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 According to the entire node number of each element, the

corresponding element location vector can be provided for determining

the relationships between local and global node locations as follows

ꞏ ꞏ ꞏ
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2.2  Global assembly from one-dimensional elements
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 In order to implement global assembly from one-dimensional

elements, the node numbers are marked on the left and upper sides of

the matrix, and the expanded form of the stiffness matrix is given via

element location vector
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2.2  Global assembly from one-dimensional elements
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 Similarly, the of node numbers is marked on the left of the load vector,

and the expanded load is given by
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2.2  Global assembly from one-dimensional elements
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 A standard linear problem with the final stiffness equations is as follows

36
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 Matrix form of stiffness equation

 Formal solution

 Displacement and stress solution

2.2  Global assembly from one-dimensional elements
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2.2  Treatments on boundary conditions
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 (1) Displacement boundary conditions

This is equivalent to setting

 (2) Traction boundary conditions

The EndThe End
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