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2 Computational Solid Mechanics

2.1 Elasticity equations
2.2 Weak Forms and FE Approximation:
1-D Problems

2.2 Weak form of equivalent integration for differential equations

e Strong Form: governing equations (Partial Differential Equations, PDEs)
e Weak Form:
(1) Multiply each equation by an appropriate arbitrary function.
(2) Integrate this product over the space domain of the problem.

(3) Use integration by parts to reduce the order of derivatives to
a minimum.

(4) Introduce boundary conditions if possible.

An arbitrary function is one that can take any value we can
imagine. It can be a polynomial(£ Ji3\), a trigonometric function
(= #K%0), a Dirac delta function, or any other function.
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2.2 Weak form of one-dimensional elasticity problems

. . . . 0 ---> b
B One-dimensional elastic cantilever beam 3_)—)‘
X

x=a x=b
e Displacemet: u strain: & stress: o,
. . ou
e Geometric equation: L o
X
e Constitutive equation: o, =Eg,
e . . o 5] ou
e Equilibrium equation: 9% p =0 :—(E —J +b, =0
Ox ¥ 1O ox i
° .
e Boundary conditions: 7, is the unit
_ i outward normal
u=1u(=0), X=d ivector ;
t, =7 =no (=0). x=b 5
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2.2 Weak form of one-dimensional elasticity problems

B Weak form of equilibrium equation

e We start by introducing an arbitrary function w(X) that is defined in
the domain described by the interval a < x < b. Multiplying the
equilibrium equation by this function we may write

Jo

—+b.=0
0o o
glo.u, o, )= w(x(b! +— ) =0
Ox
e Integrate this product over the space domain of the problem
oo
Glw,u,0,)= j u-'(x)[bj. Tl )dA =0
@ ox
6

2.2 Weak form of one-dimensional elasticity problems

B Weak form of equilibrium equation

e Integrate the stress term by parts as if" () e e ‘[“ b

Glw.u.o,)= I n(.\')[ b, +}-h’ =0
e ox

—= Lu(,r)c—i.‘d‘c =w(x)no | - L %a’ dx

@ o
e Where I' is the boundary of Q, and n, is the outward pointing normal

to the boundary. The boundary term may be expressed in terms of the

traction as

w(x)no,

L= w(x)rr(x)‘r =w(b)a _(b)—w(a)a (a) = w(b)r (b)+w(a)r (a)

where we have noted n(b) = 1 and n(a) = —1.

2.2 Weak form of one-dimensional elasticity problems

B Weak form of equilibrium equation

e We also again introduce the notation that u is a boundary where u = i ,

tis a boundary where r, = 1, , and the total boundary is I'=I', UT,.

With this notation we can write the weak form for equilibrium as

|j===a

100, |
G(W,H, G\)_J.Q“;(x)[b"H \;PX_O

I A
1 Ox

‘

ow o
G(w, i, O'_): w(x)b,dxi— | —o dx+wt | +wi| =0
* Q N 2 Ay *|r, Fleoa
i Lo L g
ﬂ w_ =0 8
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2.2 Weak form of one-dimensional elasticity problems

B Weak form of equilibrium equation
e We also again introduce the notation that u is a boundary where u = i ,
t is a boundary where r, = t, , and the total boundary is I'=",UT",.

With this notation we can write the weak form for equilibrium as

JR—

100, ),
Glw,u,0,)= J.Q w(x)[b\ +i_ o :ild) =0

Glw.u,0,)= [ wbdn- [ %o dv v,

2.2 Weak form of one-dimensional elasticity problems

B Weak form of equilibrium equation
e We also again introduce the notation that u is a boundary where u = i ,
tis a boundary where r, = 1, , and the total boundary is I'=I", UT,.

With this notation we can write the weak form for equilibrium as

—-_———

1
100, g =
Glw,u,0,)= J.p w(x)[b\ 44:_ o Jd)\ =0

P g M s i 1= 0
o ox ar g
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2.2 Finite element computation based on weak form

B Galerkin method

e To construct an approximate solution we express the displacement
u(x) in terms of a set of specified functions multiplied by unknown
parameters.

u(x)~ i(x) = Z::?f”(x u +1’z(x)

e In a similar way, we write the arbitrary function w(x) in terms of
an equal number of specified functions and arbitrary parameters.
These may be expressed as

w(x) A 13‘(x) = z\: Y, (x)“’m

m=1

In the above form we assume that both ¢"(.\’) and v, (x) are zero at
all locations where the boundary DISPLACEMENT is specified.

2.2 Finite element computation based on weak form !

e The function #;(x) is then specified as any function that satisfies the
DISPLACEMENT boundary condition. For example, if the
displacement must satisfy u(L)=d on the domain 0 <x < L, this

function may be taken as

12
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2.2 Finite element computation based on weak form

B Galerkin method

=0

@Eau

ulx)

Glw, u)= In(a)b(h j

~n(x)

G- ()

Uy (x)=

Zﬂ‘\h +ug(x)
l(x) :Zwm xhe,

n'(,\' z ]
e An approximate Galerkin solution for the elasticity problem

dp. _
+ﬁdex

2.2 Finite element computation based on weak form

dy, gl df, 4
£y Y
o dx dx

Z“mj;' dx

=0

b dx-

G(,it) anj w,b,

=]

1
1
i
k.= dv, o 44, ;.
2 dx dx

stiffness matrix

/ :meb\dx—deWT
14

dg,
—ddx+w, [
dx XU

load matrix

dv, .| <~ d¢
“ap ¥
o dx {; dx a dx

GO, 1) Zwmj v, b dx— Zwm
13

+‘waww (x)F. . =0

2.2 Finite element computation based on weak form

e Since the parameters w,, are arbitrary, the expression multiplying

N

each one must be zero. This leads to the set of equations

m=1.2..

N
< —
Z Arruran - f;r:’

n=l

e The original problem of partial differential equations has been

reduced to a set of algebraic equations

15

2.2 Finite element computation based on weak form

e Matrix form of stiffness equation
Ka=f
Kll Kl? KL\' -fl‘
K K, K.

K= * - W and f= J:

K.\‘l K.\‘l K.\:\’ j;
e Formal solution
=K'f

e Displacement and stress solution
6.(x)= ) _ E[
ax n=l

n=I

o :z}(.\’):izﬁ"(.\')nnﬂlg(x)




2.2 Finite element computation based on weak form

B Example 3.1. Solutions of Galerkin method for

one-dimensional elastic cantilever beam

‘ f,=25
static problem with length 10

units and £ = 1000. Figure 3.1 " ; 44

e As an example we consider a

shows the problem to solve.
o Figure 3.1 One-dimensional elastic
cantilever beam in Example 3.1.
10 for0O<x<5

b
* Loading 5, {0 for5<x <10

e Boundary conditions

u(0)=0 and 7(10)=25 17

2.2 Finite element computation based on weak form

e Weak form

Glw.u)= _[Q w(x)b dx - L %E %d_\' +wi| =0

>

["1000 7" dux — [ wlx)0dx ~ w(10)25 = 0
ox 0

~

ox
e consider an approximate solution

______________________________________________________________________________________

2.2 Finite element computation based on weak form

o Weak form

| )7 =Y s( x )" -
;[E lom’{ﬁ) {EJ dx:inn__[]{m} 10dx+25

10 x ) 100mn
K, =[ 10mn = | dx=——"-
" -L mH[IO] : m+n—1

) m me1
f,,,:j‘(i) 10dy+25=1% (1) +25
(10 m+1\2

19

2.2 Finite element computation based on weak form

e For example, M=N=2, the stiffness matrix and load matrix are given by

k, k,| [100 100
K= .
k, k,| [100 400/3

AN
-t

e Matrix form of stiffness equation

Ka=f

20
20
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2.2 Treatments on boundary conditions

e Formal solution a= K-lf

100 100 | g, 75/2 |]:> a, 0.62500
= a= =
100 400/3]|a, 175/ 6 a, —-0.25000

e Displacement and stress solution

i ulx)=dilx)= iyﬁﬂ(r)ﬁ” +ug(x)  o(x)= E% = E[Z
A PR i iy Sl 1

ulx)~di(x) = Z(%] a = % % 0.625 +[%JA %(=0.25) =~0.0025x" +0.0625x

=]

6.(\=E E";“ = E[;%ﬂ" ) =—5y+62.5

21
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2.2 Finite element computation based on weak form

e Similarly, we get the solutions under different number of terms

N-terms ap a az as as

1 0.37500

3 0.78125 -0.71875 0.31250

!
4 0.78125 -0.71875 0312501 0.00000:
1.

5 0.73437 -0.25000 -1.09275 1.64063 0.65625

o Table 3.1 Parameters for one-dimensional elastic
cantilever beam in Example 3.1.

e Discard terms that do not contribute to the solution.

e Does not lead to convergent behavior.

22
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2.2 Finite element computation based on weak form

e Displacement and stress solution

1. The displacement at the free end is the same no matter how many terms we use. This
often happens in one-dimensional static problems but, unfortunately, is seldom true in
higher dimensional problems.

2. The solution for stress converges more slowly than that for the displacements;

3. however, once again we observe that some points are more accurate than others. These
we shall call super-convergent points and these points play an important role in our

later discussion on error estimates and adaptive refinement of solutions.

0.40
0.35
0.30
025

=020
0.15
0.10
0.05
0

X
(b)
o Figure 3.2 Displacement and stress solutions in Example 3.1 based on

Galerkin method using N-terms solutions: (a) displacement and (b) stress. 23

2.2 Finite element computation based on weak form

B Finite element computation

e A more convenient method to construct the approximating functions
@, and y,, are obtained by dividing the domain to be analyzed into small
regular shaped regions. For example, we can divide the one-dimensional
region between a and b into a set of “M” small finite segments by
defining a set of N points x; such that

x,=a x,<x, and x,=b

For a one-dimensional problem we can let each increment define a finite

element domain (or more simply, an element) and the set of points define

the nodes (finite element mesh or mesh).

24
24
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2.2 Finite element computation based on weak form

2.2 Finite element computation based on weak form

e A simple set of continuous polynomial approximating functions

0, X <X C, function since only the function
l X, <X<x, is continuous in x, whereas the first
X, —X,, s . .
g=1. derivative is only piecewise
X =X x <x<x . . . L
. -x T continuous with the discontinuities
E XX, located at the nodes.
¢ dg, /dx
T
4 dg,/dx [ ]
» I
4, dg, /dx
||
b AN T !
J
. dg, /dx jum|
Yox,ox C X X, XX X . Xpa X
(a) (b)
e Figure 3.3 One-di ional finite el t approximation for ¢, : 25

(a) functions and (b) derivatives.

25

o Integrals over each element in the weak form functional
M T
Lax=2]"0ax =2, 0dx

Considering any interval [x;, x;,,], we note that each interval is defined
by the same two local functions N, and N,. We call these the shape
Sunctions (JEER%) for the element. To simplify the notation we also
define local nodal coordinates on each element as x{ and x5.

O_A_o_o@b dg, /d D_i:t‘ ——s
¢ ‘ﬁ“rdrd.r

(@) e
P AN dg,, Mdx d»_o_«qj_q’wf jdx

(3
Ny X X X Xy X Xi-z Xiet % Xiay Xiez Xins

(a) (b)
e Figure 3.4 One-di ional finite el t shape functions: (a) functions and og
(b) derivatives. 26

2.2 Finite element computation based on weak form

e Displacements and arbitrary weight function

i =N, (x")as + N, (x') s

W= N ()24 () 5

e Local coordinate system

NE)=1-T and N(¥)=1 27
h ; h,

e

dN, dN, 1 dN, dN, 1
= =—— and =2
dx  dx’ h, dx dx" A

27

2.2 Finite element computation based on weak form

o Weak form in global domain

ow . ou i
Glw, u)= [ w(x)b,dx —.[QaEach +wil =0
e Weak form in each element
‘é{ﬁ/,l?) = éﬂ (w,a)— éf(1b, )= (>, -
dn,
o A L [AN AN,
G, (W)= ;["’1 W5 ]L dﬁ} Ee|: dx'l i ]n’x {ﬁ:}
dx'

G, )= 3¢ ﬁ’:]IJ"{gl}b‘d”'
e=1 2
28
28
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2.2 Finite element computation based on weak form

2.2 Global assembly from one-dimensional elements

e Each element can be evaluated as element stiffness matrix and load

matrix
dN,
e ae TN, am T, [Ks K:
K= E| — —ZX|dx'=
I, [dx’ ax |7 7|k ke
dx'
a | N, ‘
fg:J' 1 ‘d:\": .f;
S B s
o Element stiffness matrix and load matrix
L 2|
:Eeandbxareconstant N(¥)=1-"- and N(x):Z— :
L e o e e e S SN
1 1 1
L d r=nn
h|-1 1 2 1 2929

e In the one-dimensional beam model, N-1 elements (“A”” small finite

segments) and N nodes are used

Element number @ @ @

| | | L |
\ 1 1 1 1

Node number | 2 3 N-1 N

e Figure 3.5 Element and node numbers of one-dimensional problem.

30
30

2.2 Global assembly from one-dimensional elements -

2.2 Global assembly from one-dimensional elements

e Then for each element we define the relationship of the local nodes to

the global node number

e Table 3.2 Local to global node numbering for two-end element for
one-dimensional elastic beam.

Element
2 3 N-1

Local node number
number 1 1 2 3 N-1
2 2 3 4 N

31
31

e According to the entire node number of each element, the
corresponding element location vector can be provided for determining

the relationships between local and global node locations as follows
A={1 27 p={2 37 -+ A7={N-1 N}T

Element number (@D @ @

Node number | 2 3 N-1 N

32
32
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2.2 Global assembly from one-dimensional elements

e In order to implement global assembly from one-dimensional
elements, the node numbers are marked on the left and upper sides of
the matrix, and the expanded form of the stiffness matrix is given via

element location vector
Node

number

fe 33

2.2 Global assembly from one-dimensional elements

o Similarly, the of node numbers is marked on the left of the load vector,

and the expanded load is given by

|
Node 1 A
number 2 A
3 f _
N-1 | fi
N fe

34
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2.2 Global assembly from one-dimensional elements

e A standard linear problem with the final stiffness equations is as follows

Ku=f

Node 1 2 3 N -1 N
number 1 K\ K 0 i,
2 Ky Ku+Ky Ky 0 {'f:
3 0 K3 (ki+k3) K: i
N-1 Kt (kyTeky) K \'3.\-1
N K% KXy
R
f:
- fE
\j..\'l :
Sy i

35
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2.2 Global assembly from one-dimensional elements

e Matrix form of stiffness equation

K, K, Ky A
K, K, K.

K= * Ml oand f= J:
Ky Ko o Ky f;

e Formal solution

u=Kf

e Displacement and stress solution

i'(x')=N,

Moo mepn . ROUX) (AN (¥) ., dN(X) .,
()i +N,(x) a6l =E a =E| i Bt M:J
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2.2 Treatments on boundary conditions

e (1) Displacement boundary conditions u(x,)=1,

1 0 0
0 Ki+Kj K 0
0 KL (Ki+K]) K
Kyt (REeRY) K
K3 K

This is equivalent to setting 1w, =0

® (2) Traction boundary conditions x =1

37
37

The End

38

2021-11-28

10



