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 The global assembly of two-dimensional or three-dimensional 

elements is exactly the same as that of the previous one-

dimensional problem according to the element location vector. 

 For the convenience of introduction, a typical two-dimensional 

example is given to explain the global assembly process and 

computation procedure.
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 Example 6.1. Solutions of finite element method for two-

dimensional plane strain problems.

6.3 Global assembly from high dimensional elements

The sizes of the model 

are a=30 in the 

horizontal x-direction 

and b=10 in the vertical 

y-direction. The 

material parameters are 

young’s modulus E of 

1×106 and Poisson’s 

ratio v of 0.3. 
 Figure 6.1 Element and node numbers of 

two-dimensional problem.
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 Example 6.1. Solutions of finite element method for two-

dimensional plane strain problems.
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The boundary 

conditions are that the 

upper left and upper 

right vertices are fixed, 

and the lower parts are 

fixed. The vertical 

concentrated load F

acting on the middle 

domain is -1×106.
 Figure 6.1 Element and node numbers of 

two-dimensional problem.
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 Then for each element in local parent coordinate system, the 

standard two-dimensional rectangle element with four nodes as 

shown in Fig. 6.2 is used.
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 Figure 6.2 Two-dimensional rectangle element with four nodes in local 

parent coordinate system.. 6
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6.3 Global assembly from high dimensional elements

 Table 6.1 Local to global node numbering for two-dimensional problem.
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6.3 Global assembly from high dimensional elements

 Table 6.1 Local to global node numbering for two-dimensional problem.

 Element location vector can be provided for determining the 

relationships between local and global node locations
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 In order to compute the global stiffness matrix, the stiffness 

matrix of each element should be computed according to the 

formula introduced in the previous section

 By substituting the corresponding parameters of this model, the 

stiffness matrices of the two elements shown below can be 

obtained. Here, the final computed results are given directly
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6.3 Global assembly from high dimensional elements

 In order to explain the computation process of the above 

element stiffness matrix, the implementation process of the first 

coefficient 491480.77 in        of element 1 is introduced here. 10
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 Firstly, the matrix forms of the element stiffness matrix are 

expanded

where d=(1+ν)(1−2ν).
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 It can be seen that the above formula involves the derivatives 

of shape functions to the global coordinates x and y, which can 

be converted to the local coordinate system    and    in the 

following form
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 Here it needs to use the following shape functions

 The derivatives of shape functions are

6.3 Global assembly from high dimensional elements
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 Besides, the coordinate values of nodes in element 1 in the 

global coordinate system are

6.3 Global assembly from high dimensional elements

a=30

b=10
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 By using the derivative of the shape function and the 

coordinate value of the node, it can be obtained
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 Using the above formula to compute the derivative of the shape 

function N3, and substituting the above results, we can get

The determinant of Jacobian matrix is 
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where d=(1+ν)(1−2ν).
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 By substituting the derivatives of shape function N3 and 

material parameters, the expression for the first coefficient in   

of element 1 can be obtained
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 By substituting the derivatives of shape function N3 and 

material parameters, the expression for the first coefficient in   

of element 1 can be obtained
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 The integrand function in the above formula is a quadratic 

polynomial functions of     and     , so at least two integral 

points should be used in each direction, and there are four 

integral points in the element. 

6.3 Global assembly from high dimensional elements
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6.3 Global assembly from high dimensional elements

 In this way, the stiffness coefficient can be obtained by 

numerical integration, further, other stiffness coefficients have 

the same computation process. Through the above steps, the 

values of stiffness matrices of each element can be obtained. 20
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 In order to implement global assembly from two-dimensional 

elements, the node numbers are marked on the left and upper 

sides of the matrix, and the expanded form of the stiffness 

matrix is given via element location vector

where u and f are global matrices of displacements and loads.
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where u and f are global matrices of displacements and loads.
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 The loads on the element can be obtained by integrating the 

product of the body forces and the shape functions

 Similarly, the of node numbers is marked on the left of the load 

vector, and the expanded load is given via element location 

vector
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(1) Displacement boundary conditions

 With the above finite element form, it is very simple to impose 

the displacement boundary conditions since the parameters are 

now all physical values. That is they obey the property

6.4  Treatments on boundary conditions
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 Thus, the stiffness equations can be expressed as

where I is the identity matrix.
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 It should be noted that in order to simplify, the row and column 

in the stiffness matrix of known displacement on corresponding 

nodes can be deleted, which can reduce the scale of the 

stiffness matrix

 The involved matrices and vectors are expanded, which can be 

expressed as
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6.3 Global assembly from high dimensional elements

 In this way, the stiffness coefficient can be obtained by 

numerical integration, further, other stiffness coefficients have 

the same computation process. Through the above steps, the 

values of stiffness matrices of each element can be obtained. 28
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(2) Traction boundary conditions

 In order to solve the above matrix equation, we need to know 

the load on node 3. Since there is no body force at present, the 

load matrix is
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 Furthermore, the force acting on the boundary is considered. 

Imposing a traction condition at node 3 only requires the 

modification

6.4  Treatments on boundary conditions
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 The stiffness equation to be solved becomes the following form

 It is solved directly and the following results can be obtained

6.4  Treatments on boundary conditions
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 The displacement functions of each element can be obtained by 

the combination of shape function and node displacements

Element 1

6.4  Treatments on boundary conditions
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 The displacement functions of each element by global 

coordinates

Element 1

6.4  Treatments on boundary conditions
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 The displacement functions of each element can be obtained by 

the combination of shape function and node displacements

Element 2

6.4  Treatments on boundary conditions
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 Once the displacement are known, the approximation for 

stresses on element may be computed by

 In the computation process, the derivatives of each shape 

function is needed, which is the same as the way for N3 above. 

The final derivative results of other shape functions are given 

below
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 The stress functions of each element can be obtained by the 

combination of derivatives of shape functions and node 

displacements

Element 1

6.4  Treatments on boundary conditions
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 The stress functions of each element can be obtained by the 

combination of derivatives of shape functions and node 

displacements

Element 1

6.4  Treatments on boundary conditions



2024-6-12

7

37
37

 The stress functions of each element can be obtained by the 

combination of derivatives of shape functions and node 

displacements

Element 2

6.4  Treatments on boundary conditions
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 The stress functions of each element can be obtained by the 

combination of derivatives of shape functions and node 

displacements

Element 2

6.4  Treatments on boundary conditions
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 Through the solutions of the above stress functions, the stress 

values at the integration points can be obtained, by substituting 

the coordinates of the integration points of the specified 

element. For example, the stress at integral point   

of element 1 is

6.4  Treatments on boundary conditions
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 Furthermore, by substituting the node coordinates of the 

specified element into the solution of the above stress function, 

the stress values at the nodes can be obtained. For example, the 

stresses at node 2 of                          of element 1 are as follows

6.4  Treatments on boundary conditions

The EndThe End
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