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 The basic equations for the theory of elasticity are described in

variables of displacements, strains, stresses, involving the

equations of geometric equations, constitutive equations,

equilibrium equations, and boundary equations.

 We start by specifying each equation set for a general three-

dimensional problem in Cartesian coordinates. However, we will

also consider the two-dimensional problems: plane stress, plane

strain and axisymmetric cases.

 Basic variables and equations
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 Three-dimensional problems
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 Figure 2.1 Three-dimensional elasticity problems.
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 Two-dimensional problems

(1) Plane stress. There is only nonzero stress in the problem plane here and no

stress in the direction orthogonal to the thin plate, as exhibited in Figure 2.2(a)..

(2) Plane strain. It is assumed that the strain perpendicular to the plane under

consideration is zero. This may occur in a prism, as shown in Figure 2.2(b), where

the load perpendicular to the plane remains unchanged.

(3) Axisymmetric. In the cylindrical coordinate system r−z−θ, the angle θ in the

plane considered is constant, as displayed in Figure 2.2 (c). It is assumed that all

components of stress, strain, and displacement are only realated to r and z.
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 Figure 2.2 
Two-dimensional 
elasticity 
problems.
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 Three-dimensional problem

 Two-dimensional problem

 plane stress and plane strain cases

 axisymmetric case

2.1 Displacements

 Displacement function
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2.2  Strains

 There are six independent strain components in a three-dimensional

problem. They are arranged in order and expressed in the form of a

matrix, that is:

This form is called Voigt notation. It is a way of writing a

symmetric second order tensor in terms of a reduced set of

components. The strain is a symmetric form where γxy=γyx, γyz=γzy,

and γzx=γxz; thus, Voigt notation reduces nine components to six.

 For the two-dimensional problems, the last two components are

always zero. Thus, only four components of ε need be considered.
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2.3  Stresses

 The components σx, σy, σz are called normal stresses and τxy, τyx,
τyz, τzy, τxz, τzx are called shear stresses

Thus, similar to strain, the stresses may be written in terms of six
components that are ordered and denoted in matrix form by

 Figure 2.3 
Stresses in three-
dimensional solid 
analysis.
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2.3  Stresses

 For two-dimensional plane problems we consider only four
components of stress and use

In axisymmetry we define the components of stress as

In plane stress problems we know a priori that σz= 0.

 Figure 2.4 Stresses in axisymmetric solid analysis.
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 The strains for a problem undergoing small deformations are
computed from the displacements and may be expressed in matrix
form as

where S is a matrix of differential operators and u is the
displacement field. For the three-dimensional problem the strain-
displacement relation is expressed as

2.4  Geometric equations

 Strain and displacement relations

 Three-dimensional problems
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2.4  Geometric equations

 For convenience in considering all three classes of two-dimensional
problems in a unified manner, we include four components of strain
in ε and write them as

for plane problems (where εz is zero for plane strain but not for plane
stress) and axisymmetric case

 Two-dimensional problems
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2.5  Constitutive equations

 Using this hypothesis the stress-strain equations for a linearly elastic 
material may be expressed by

or by

The D matrix is known as the elasticity matrix of moduli and the D−1

matrix as the elasticity matrix of compliances (Inverse matrix).

 Stress and strain relations: Elasticity matrix
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 In cartesian coordinates system

Inverting to obtain the appropriate elasticity matrix of moduli yields the 
result

2.5  Constitutive equations

 Three-dimensional problems
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 Two-dimensional problems in Cartesian coordinates system

 The plane stress case

 The plane strain case

2.5  Constitutive equations

 Two-dimensional problems
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2.6  Equilibrium equations

 The linear momentum or equilibrium equations for the three-
dimensional behavior of a solid may be written in Cartesian
coordinates as

 Three-dimensional problems
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 The equilibrium equations in Cartesian coordinates may be
written in a matrix Voigt form as

S is the same differential operator, b is the vector of body forces
given as

2.6  Equilibrium equations

 Three-dimensional problems
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 The linear momentum or equilibrium equations for the two-
dimensional plane problems behavior of a solid may be written in
Cartesian coordinates as

and in matrix form

2.6  Equilibrium equations

 Two-dimensional problems
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 The linear momentum or equilibrium equations for the two-
dimensional axisymmetric problems behavior of a solid may be
written in Cartesian coordinates as

and the differential operator on equilibrium in matrix form

2.6  Equilibrium equations

 Two-dimensional problems
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2.7  Boundary conditions

 Displacement boundary conditions are specified at each point of the boundary
as

where     are known values and x are points on the boundary.

 Traction boundary conditions are specified for each point of the boundary  
and are given in terms of stresses by

in which for three-dimensional problems GT is the matrix, and in two-
dimensional plane problems GT reduces to

The EndThe End
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