4 4

Computational Mechanics

(English Course)

Yongliang Wang

School of Mechanics and Civil Engineering China University of Mining and Technology (Beijing)

Monday, May 13, 2024

2 Fundamentals of Elastic Mechanics 2 Fundamentals of Elastic Mechanics - Contents Chapter 1. Introduction of Finite Element Method Chapter 2. Fundamentals of Elastic Mechanics Chapter 3. Weak Form of Equivalent Integration Chapter 4. Elements and Shape Functions Chapter 5. Isoparametric Element and Numerical Integration Chapter 6. Finite Element Computation Scheme of Elasticity Problems Chapter 7. Solutions of Linear Algebraic Equations Chapter 8. Error Estimation and Adaptive Analysis Chapter 9. Programs of Finite Element Method

Fundamentals of Elastic Mechanics			
Keywords			
• Three-dimensional prob	blem 三维问题	£	
Two-dimensional proble	em 二维问题	<u>f</u>	
• Plane stress problem	平面应力问题		
• Plane strain problem	平面应变问题		
Axisymmetric problem	轴对称问题		
• Displacement 位移	Strain 应变	Stress 应力	
Geometric equations	几何方程		
Constitutive equations	本构方程		
Equilibrium equations	平衡方程		
Boundary conditions	边界条件		
-			3

2 Fundamentals of Elastic Mechanics Basic variables and equations The basic equations for the theory of elasticity are described in variables of displacements, strains, stresses, involving the equations of geometric equations, constitutive equations, equilibrium equations, and boundary equations. We start by specifying each equation set for a general three-dimensional problem in Cartesian coordinates. However, we will also consider the two-dimensional problems: plane stress, plane strain and axisymmetric cases.

2 Fundamentals of Elastic Mechanics

- 2.1 Displacements
- 2.2 Strains
- 2.3 Stresses
- 2.4 Geometric equations
- 2.5 Constitutive equations
- 2.6 Equilibrium equations
- 2.7 Boundary conditions
- 2.8 Exercises

- 2.1 Displacements
- 2.2 Strains
- 2.3 Stresses
- 2.4 Geometric equations
- 2.5 Constitutive equations
- 2.6 Equilibrium equations
- 2.7 Boundary conditions
- 2.8 Exercises

2.6 Equilibrium equations

Three-dimensional problems

• The equilibrium equations in Cartesian coordinates may be written in a matrix Voigt form as

 $\mathbf{S}^{^{\mathrm{T}}}\boldsymbol{\sigma}+\boldsymbol{b}=\mathbf{0}$

 \boldsymbol{S} is the same differential operator, \boldsymbol{b} is the vector of body forces given as

$$\mathbf{b} = \begin{bmatrix} b_x & b_y & b_z \end{bmatrix}^T$$

23 23

2.6 Equilibrium equations

Two-dimensional problems

• The linear momentum or equilibrium equations for the twodimensional plane problems behavior of a solid may be written in Cartesian coordinates as

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + b_x = 0$$
$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + b_y = 0$$

and in matrix form

$$\mathbf{S}_{p}^{\mathrm{T}}\mathbf{\sigma}+\mathbf{b}=\mathbf{0}$$

24 24

Su

2 Fundamentals of Elastic Mechanics

Ô

- 2.1 Displacements
- 2.2 Strains
- 2.3 Stresses
- 2.4 Geometric equations
- 2.5 Constitutive equations
- 2.6 Equilibrium equations
- 2.7 Boundary conditions
- 2.8 Exercises

