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3 Weak Form of Equivalent Integration

3.1 Weak form of equivalent integration for differential
equations

3.2 Weak form of one-dimensional elasticity problems

3.3 Finite element computation based on weak form

3.4 Global assembly from one-dimensional elements

3.5 Treatments on boundary conditions

3.6 Exercises

3.3 Finite element computation based on weak form

B Finite element computation

e A more convenient method to construct the approximating functions
¢, and y,, are obtained by dividing the domain to be analyzed into small
regular shaped regions. For example, we can divide the one-dimensional
region between a and b into a set of “M” small finite segments by
defining a set of N points x; such that

x=a x<x, and x,=b

For a one-dimensional problem we can let each increment define a finite
element domain (or more simply, an element) and the set of points define

the nodes (finite element mesh or mesh).

3.3 Finite element computation based on weak form :

e A simple set of continuous polynomial approximating functions

x<x, C, function since only the function
X, SX<x is continuous in x, whereas the first
#= derivative is only piecewise
NSASN continuous with the discontinuities
X>x, located at the nodes.
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3.3 Finite element computation based on weak form

e Integrals over each element in the weak form
Mo
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Considering any interval [x;, x;,,], we note that each interval is defined
by the same two local functions N, and N,. We call these the shape
functions (JE %) for the element.
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3.3 Finite element computation based on weak form

e Define local nodal coordinates x"on each element with X{ and x5.

e v

| | X'=x—x] h=xi-xf
x; X x3 ! -
0, X<, :
e Local coordinate system : H
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e Displacements and arbitrary function on the element

u* =N, (x' )i + N, (x) s
W= N, (x) 90 + N, () s

3.3 Finite element computation based on weak form '

e Weak form in global domain
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3.3 Finite element computation based on weak form

e Each element can be evaluated as element stiffness matrix and load

matrix
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e Element stiffness matrix and load matrix

3.3 Finite element computation based on weak form \ 2
e Weak form in global domain
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e Weak form in each element
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3.3 Finite element computation based on weak form

3.3 Finite element computation based on weak form \ )

e Weak form in global domain

Glw, u)= L)w(x)de\’—.[ Z‘:

:0

e Weak form in each element

‘G{u i) =G, (i) G,(ﬁ',ﬂ)fﬁ'{:r}i‘.lr_ :0‘

e Since u\

Wi (K )+ 0] f, (KO u) +..
R K )+ (KL ) = 0

o Weak form in global domain

;G(w, u)= Lw(x)brd\'—j %E%dxﬁ—w( | =

e Weak form in each element

Gliv,1) = G, (,41) - G, (#,2) - (x)E,| -, =0

o Since the parameters 1! are arbitrary, the expression multiplying each

one must be zero. This leads to the set of equations:
LK .fu)=0
LE . fu)=0

= |7 = Ku-f=0 = Ku=f
S (K ) =0
LK u)=0 ",

The End




