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 Each element can be evaluated as element stiffness matrix and load 

matrix

 Element stiffness matrix and load matrix

Ee and bx are constant

3.3  Finite element computation based on weak form
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3.4  Global assembly from one-dimensional elements

44

 In the one-dimensional beam model, N-1 elements (“M” small finite 

segments) and N nodes are used

 Figure 3.5 Element and node numbers of one-dimensional problem.
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3.4  Global assembly from one-dimensional elements
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 Then for each element we define the relationship of the local nodes to 

the global node number

 Table 3.2 Local to global node numbering for two-end element for 
one-dimensional elastic beam.
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3.4  Global assembly from one-dimensional elements
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 According to the entire node number of each element, the

corresponding element location vector can be provided for determining

the relationships between local and global node locations as follows

ꞏ ꞏ ꞏ
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3.4  Global assembly from one-dimensional elements

47

 In order to implement global assembly from one-dimensional

elements, the node numbers are marked on the left and upper sides of

the matrix, and the expanded form of the stiffness matrix is given via

element location vector
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3.4  Global assembly from one-dimensional elements
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 Similarly, the of node numbers is marked on the left of the load vector,

and the expanded load is given by
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3.4  Global assembly from one-dimensional elements
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 A standard linear problem with the final stiffness equations is as follows
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 Matrix form of stiffness equation

 Formal solution

 Displacement and stress solution

3.4  Global assembly from one-dimensional elements
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3.5  Treatments on boundary conditions
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 (1) Displacement boundary conditions

This is equivalent to setting

 (2) Traction boundary conditions
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 Weak form in global domain

 Weak form in each element

3.3  Finite element computation based on weak form

Review 

previous 

content
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3.5  Treatments on boundary conditions

 Example 3.2. Solutions of finite element method for 

one-dimensional elastic cantilever beam

 As an example we consider a 

static problem with length 10 

units and E=1000. Figure 3.1 

shows the problem to solve. 

 Loading

 Boundary conditions

 We divide the domain into 

four equal elements.

 Figure 3.1 One-dimensional elastic 
cantilever beam in Example 3.1.

 Figure 3.6 Four-element mesh for one-
dimensional elastic cantilever beam in 
Example 3.2. 55
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 Each element can be evaluated as element stiffness matrix and load 

matrix

 Element stiffness matrix and load matrix

Ee and bx are constant

3.3  Finite element computation based on weak form

Review 

previous 

content

56
56

 Element stiffness matrix and load matrix

3.5  Treatments on boundary conditions
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 Element stiffness matrix

3.5  Treatments on boundary conditions
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 Load matrix

 Matrix form of stiffness equation

3.5  Treatments on boundary conditions
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 Displacement boundary conditions

3.5  Treatments on boundary conditions
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 Traction boundary conditions

3.5  Treatments on boundary conditions
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 Formal solution

 Displacement and stress solution

3.5  Treatments on boundary conditions
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 Displacement and stress solution

3.5  Treatments on boundary conditions
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 We divide the domain into 
four equal elements. 

 Stresses are converging more 
slowly than the displacements 
(this was true for the first 
example also) but again have 
super-convergent points.

3.5  Treatments on boundary conditions

 Figure 3.6 Four-element mesh for one-
dimensional elastic cantilever beam in 
Example 3.2.

 Figure 3.7 Displacement and stress solutions in Example 3.2 based on finite 
element method using N-element solutions: (a) displacement and (b) stress.
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 Similarities 

1 Weak form. 

2 Solution function.

3 Algebraic equations.

 Differences

1 Domain of solution function: Element, shape function.

2 Treatments on boundary conditions: Ku=f.

Galerkin method VS Finite element method

The EndThe End
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