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 As a second example of two-dimensional shape functions, we 

consider rectangles of the form shown in Fig. 4.10. The 

rectangular element considered has side lengths of 2a and 2b in 

the x- and y-directions, respectively.

4.3  Two-dimensional rectangle element

 Linear rectangle element with four nodes

 Figure 4.10 Rectangle element geometry and node numbers.
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 For the derivation of the shape functions it is convenient to use 

a local Cartesian system x’, y’ defined by

4.3  Two-dimensional rectangle element

 Figure 4.10 Rectangle element geometry and node numbers.

in which x0, y0 are located at the 

center of the rectangle and xa, ya are 

coordinates of the nodes.
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 We now need four functions for each displacement component 

in order to uniquely define the shape functions. A suitable 

choice is given by:

where     is displacement on the element, which can be the 

displacement u in x-direction or the displacement v in y-

direction; the unknown parameters     to     may be evaluated in 

terms of the displacements at each of the four vertices of the 

rectangle.

4.3  Two-dimensional rectangle element
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 The coefficients αa may be obtained at each vertex node giving

4.3  Two-dimensional rectangle element

 Figure 4.10 Rectangle element geometry and node numbers.
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 Basing on the inverse to the coefficient matrix and substitution, 

we can again solve for αa in terms of the nodal displacements 

to obtain finally

 We obtain the four shape functions

4.3  Two-dimensional rectangle element
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 For implementing the numerical integration to evaluate the 

integrals in weak form and providing the rectangular element 

geometry and local node numbers as shown in Fig. 4.11, we let

4.3  Two-dimensional rectangle element

 Figure 4.11 Rectangular element geometry and local node numbers: (a) 
global coordinates, (b) local coordinates.

−1≤ ξ, η ≤1
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 The shape functions may be written as

4.3  Two-dimensional rectangle element

−1≤ ξ, η ≤1
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 The shape function for a=3 is shown in Fig. 4.12, it can be seen 

that the value of this shape function is one at node 3, and the 

value is zero at other nodes 1, 2, or 4. 

4.3  Two-dimensional rectangle element

 Figure 4.12 Shape function N3 for two-dimensional 
rectangle with four nodes.
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 More generally, these shape functions have the following 

properties:

where              is the local coordinate. 

 Besides, the completeness condition then requires that   

contains any constant c (displacement of rigid body), which 

then yields
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 For three-dimensional problems, a simple element is a 

tetrahedron with four nodes as shown in Fig. 4.14.

4.4  Three-dimensional tetrahedron element

 Linear tetrahedron element with four nodes

 Figure 4.14 Tetrahedron element geometry and node numbers.
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 The compatible displacement field is again given by a complete 

linear polynomial expansion as

where      is displacement on the element, which can be the 

displacement u in x-direction or the displacement v in y-

direction or the displacement w in z-direction; the unknown 

parameters      to       may be evaluated in terms of the 

displacements at each of the four vertices of the tetrahedron.

4.4  Three-dimensional tetrahedron element
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 The coefficients αa may be obtained at each vertex node giving

 The inverse is expressed as

4.4  Three-dimensional tetrahedron element
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4.4  Three-dimensional tetrahedron element

 V is the volume of the tetrahedron
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4.4  Three-dimensional tetrahedron element

 The other constants defined by cyclic interchange of 

the subscripts in the order 1, 2, 3, 4.
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 The above solution for the parameters αa permits the element 

interpolations to be rewritten in terms of nodal parameters as

 This gives the shape functions

4.4  Three-dimensional tetrahedron element

4.1  One-dimensional Lagrange element

4.2  Two-dimensional triangle element

4.3  Two-dimensional rectangle element

4.4  Three-dimensional tetrahedron element

4.5  Three-dimensional hexahedron element

4.6  Exercises

4  Elements and Shape Functions4  Elements and Shape Functions



2024-5-31

4

19
19

 For a three-dimensional problem, we consider the hexahedron

shown in Fig. 4.17.

4.5  Three-dimensional hexahedron element

 Hexahedron with eight nodes

 Figure 4.17  Hexahedron element geometry and node numbers.
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 The development of shape functions follows the procedure 

used for the four-node rectangle. For the derivation of the 

shape functions, it is convenient to use a local Cartesian system 

x’, y’, z’ defined by

where

in which x0, y0, z0 are located at the center of the hexahedron 

and xa, ya, za are coordinates of the nodes.

4.5  Three-dimensional hexahedron element
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 We may write a polynomial expression for     as

4.5  Three-dimensional hexahedron element
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where     is displacement on the element, which can be the 

displacement u in x-direction or the displacement v in y-direction 

or the displacement w in z-direction; the unknown parameters     

to     may be evaluated in terms of the displacements at each of the 

eight vertices of the hexahedron.

4.5  Three-dimensional hexahedron element
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4.5  Three-dimensional hexahedron element

 For implementing the numerical integration to evaluate the 

integrals in weak form and providing the hexahedron element 

geometry and local node numbers as shown in Fig. 4.18

 Figure 4.18  Hexahedron element geometry and local node 
numbers: (a) global coordinates, (b) local coordinates. 24
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4.5  Three-dimensional hexahedron element

 We let

which we recognize as products of one-dimensional Lagrange 

interpolations using the coordinates −1≤ ξ, η,  ≤1.

 Figure 4.18  Hexahedron element geometry and local node 
numbers: (a) global coordinates, (b) local coordinates.
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 The coefficients αa may be obtained in the identical manner 

used above for the two-dimensional rectangle. Basing on the 

inverse to the coefficient matrix and substitution, we can obtain 

the eight shape functions

4.5  Three-dimensional hexahedron element

The EndThe End
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