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a b s t r a c t

Mechanically-based numerical modeling is a powerful tool for investigating fundamental processes
associated with the formation and evolution of both large and small-scale geologic structures. Such
methods are complementary with traditional geometrically-based cross-section analysis tools, as they
enable mechanical validation of geometric interpretations. A variety of numerical methods are now
widely used, and readily accessible to both expert and novice. We provide an overview of the two main
classes of methods used for geologic studies: continuum methods (finite element, finite difference,
boundary element), which divide the model into elements to calculate a system of equations to solve for
both stress and strain behavior; and particle dynamics methods, which rely on the interactions between
discrete particles to define the aggregate behavior of the system. The complex constitutive behaviors,
large displacements, and prevalence of discontinuities in geologic systems, pose unique challenges for
the modeler. The two classes of methods address these issues differently; e.g., continuum methods allow
the user to input prescribed constitutive laws for the modeled materials, whereas the constitutive
behavior ‘emerges’ from particle dynamics methods. Sample rheologies, case studies and comparative
models are presented to demonstrate the methodologies and opportunities for future modelers.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Forward mechanical modeling has become an increasingly
popular tool in the study of structural geology, as it can provide
fundamental insights into the formation, evolution, and geometries
of complex geologic features. In this paper, we present an overview
of the current state of mechanical modeling as applied to the
structural geology of contractional systems. We focus on methods
receiving the majority of usage today, specifically, finite elements
and particle dynamics. Finite difference and boundary element
techniques are briefly described for comparison. This paper is tar-
geted at the general structural geology community, and assumes
only minimal experience with numerical modeling and the con-
cepts behind the different techniques. It is not possible to review
the entirety of numerical structural modeling in a short paper, as
this topic encompasses scales from the entire crust and lithosphere
down to initiation and growth of a single fracture. Therefore, we
focus this review on the application of forward mechanical
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modeling of contractional systems, from the regional cross-section
to the individual structure scale, similar to the scale of problems
addressed by balanced section analysis.

Many modeling techniques commonly used by the geologic
community were developed for solving engineering problems. The
goal of most engineering applications is to determine the stress/
strain conditions at which a system or structure begins to fail. Such
problems range from soil stability for foundation analysis to metal
fatigue for bridges, airplane, and automotive parts. It is typically
less important for the structural engineer to understand the
behavior of the model system once failure is underway (i.e., the
behavior of a foundation after it cracks or the airplane wing as it
tears and falls off). Most such codes are optimized for these types of
low-strain, failure-limit analysis problems. Geologists, of course,
are typically more interested in the evolution of systems after the
onset of failure. For example, folds and faults begin to form and
move, permanently changing the state of the system. These types of
geologic behaviors are kinematically discontinuous in nature, and
generally involve large displacements and strains, conditions for
which few engineering codes are optimized. The accumulation of
large strains causes excessive distortion of the mesh used in con-
tinuum modeling, preventing such models from converging on a
solution. These issues pose unique challenges that must be
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Fig. 1. Diagram showing a typical finite element model with the mesh and a pre-defined slip surface. This view shows the model after significant lateral contraction. Colors are
contours of displacement in the vertical direction. Modified from Sanz (2008).

G.G. Gray et al. / Journal of Structural Geology 59 (2014) 19e3620
overcome when modeling discontinuous processes, such as fault-
ing, with many of these methods (Munjiza, 2004).

Despite these cautionary comments regarding the abilities of
forward mechanical modeling in structural geology, numerical
models offer powerful ways to identify and assess feasible solutions
to structural interpretations, and provide important insights into
the mechanical conditions under which they must form. For these
reasons, forward modeling is becoming increasingly popular,
rapidly advancing the state of knowledge in structural studies with
a wide range of applications.
2. Continuum and particle-based numerical methods

Numerical methods are required to study geologic problems
that are too complex for simple analytical solutions. The linear
momentum balance law is the governing equation for the defor-
mation of solids and these methods are capable of solving this
equation in problems with irregular geometries and boundaries,
and non-linear material behavior. The mechanical behavior of
geologic materials can be modeled as a continuous mass or as
discrete particles. A spectrum of different modeling approaches
have been developed for wide variety of applications. The following
section examines the most common continuum and discrete nu-
merical methods utilized in forward modeling of contractional
geologic structures.
2.1. Continuum methods

The basic strategy of the continuum methods (finite element,
finite difference, and boundary element) is to discretize the model
geometry into smaller subdomains (e. g., Laursen and Simo, 1993,
and many others). The subdomains share nodes and edges, and any
surfaces that are defined within the model. The nodes, edges and
surfaces comprise a mesh that provides the framework within
which the calculations are made (Fig. 1). The models runs are
divided into a series of time-steps. At each time-step, the mesh is
moved by pre-defined loads and/or displacements at the model
boundaries, and the effect of these changes on adjacent nodes and
elements propagates via a system of mathematical equations
throughout the rest of the mesh as needed tomaintain equilibrium.

Continuum methods assume that the processes and properties
being modeled can be represented as smoothly varying fields. The
three methods discussed herein deal with this continuum in
different ways. Finite element and finite difference models use a
similar meshing strategy for the entire domain. The primary
distinction between these two techniques is that the finite element
method solves an equivalent weighted-integral, or weak form of
the problem (e.g., Zienkiewicz, et al., 2005). The finite difference
method directly approximates the partial differential equation, or
strong form of the problem, using finite difference equations (e.g.,
Detournay and Hart,1999). The finite element approach is generally
better suited for non-linear problems with irregular geometries
and complex boundary conditions. In addition, there are many
well-developed and verified academic and commercial finite
element codes with large capacities in terms of computing power
and material complexities. For these reasons, it is the most widely
applied numerical method for modeling in structural geology
(Melosh and Williams, 1989; Mäkel and Walters, 1993; Braun and
Sambridge, 1994; Erickson and Jamison, 1995; Mohapatra and
Johnson, 1998; Smart et al., 1999; Cardozo et al., 2003; Ellis et al.,
2004; Kwon and Mitra, 2004; Panian and Wiltschko, 2004; Crook
et al., 2006b; Sanz et al., 2007; Simpson, 2009; Albertz and
Lingrey, 2012; Albertz and Sanz, 2012; see also Table 1).

The finite difference method is the oldest member in this family
of numerical methods. This method transforms the original partial
differential equations into systems of algebraic equations with
unknowns at the grid points. As with the finite element method,
the solution of the system of equations is obtained after imposing
the necessary initial and boundary conditions. Finite difference
methods are excellent for static problems such as heat flow and
temperature modeling, and have some strong adherents for
lithospheric-scale viscous models (e.g., Gerya, 2010).

A commonly used finite difference code for geologic structures
is FLAC (Fast Lagrangian Analysis of Continua) (http://www.
itascacg.com/flac/overview.html), first released in 1986. FLAC uti-
lizes an explicit integration scheme and considers large strains
(geometric nonlinearities) in the solution. An important advantage
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Table 1
Compilation of continuum structural modeling studies showing the methods and constitutive behaviors.

Author/s, year Method, program 2D/3D Material model

Melosh and Williams, 1989 FEM 2D Elastic layer
Mäkel and Walters, 1993 FEM 2D Drucker Prager with non-associated flow
Poliakov et al., 1993 FD 2D MohreCoulomb with non-associative and viscous rheologies
Erickson, 1995 FEM 2D DruckerePrager with associated flow
Erickson and Jamison, 1995 FEM 2D DruckerePrager and viscous rheologies
Willemse et al., 1996 BEM 3D Linear elastic
Barnichon and Charlier, 1996 FEM, LAGAMINE 2D DruckerePrager and Van Eekelen non-assocaitive flows
Jamison, 1996 FEM, SAVFEM 2D Coulomb friction (faults) and viscous rheology
Cooke and Pollard, 1997 BEM 2D Linear elastic
Sassi and Faure,1997 FEM 2D Linear elasticity and elasto-plasticity; Coulomb friction contact
Strayer and Hudleston, 1997 FD, FLAC 2D MohreCoulomb
Upton, 1998 FD, FLAC 2D MohreCoulomb with non-associative flow
Mohapatra and Johnson, 1998 FEM 2D Linear elastic
Gerbault et al., 1998 FD, FLAC 2D MohreCoulomb
Niño et al., 1998 FD, FLAC 2D DruckerePrager and viscous rheologies
Maerten et al., 1999 BEM, POLY3D 3D Linear elastic
Smart et al., 1999 FEM, JAC2D 2D Elasto plastic
Vanbrabant et al., 1999 FEM, ADELI 2D DruckerePrager (2-invariant)
Beekman et al., 2000 FEM, TECTON* 2D MohreCoulomb (no hardening)
Cooke et al., 2000 BEM 2D Linear elastic
Cooke and Underwood, 2001 BEM, FRIC2D 2D Linear elastic
Erickson et al., 2001 FD, FLAC 2D Linear elasticity and MohreCoulomb
Strayer et al., 2001 FD, FLAC 2D MohreCoulomb with non-associative flow
Schultz-Ela, 2002 FEM, GEOSIM-2D 2D DruckerePrager with non-associtive flow and softening
Cardozo et al., 2003 FEM, ABAQUS 2D DruckerePrager with associative and non-associative flow
Guiton et al., 2003a FEM 3D Elastoplatic with diffuse inherited weak discontinuities (anisotropic)
Guiton et al., 2003b FEM 3D MohreCoulomb with multiple internal variables
Savage and Cooke, 2003 BEM, POLY3D 3D Linear elastic
Wissing and Pfiffner, 2003 FEM, MICROFEM 2D MohreCoulomb with viscocity
Ellis et al., 2004 FEM 2D MohreCoulomb with non-associated flow and strain softening
Erickson et al., 2004 FD, FLAC 2D MohreCoulomb with non-associative flow and cohesion softening
Kwon and Mitra, 2004 FEM,

MARC-MENTAT
3D Elastoplastic power law

Savage and Cooke, 2004 BEM, POLY3D 3D Elastic, and frictionless faults
Bellahsen et al., 2006 BEM, POLY3D 3D Linear elastic
Crook et al., 2006a, b FEM, ELFEN 2D Critical State Model (SR3)
Henk, 2006 FEM, ANSYS 2D Elastic perfectly plastic; power law creep
Sheldon et al., 2006 FD, FLAC3D 2D Cam Clay with associative flow
Simpson, 2006 FEM 2D Elasto-visco-plastic
Couples et al., 2007 FEM, SAVFEM 2D DruckerePrager with Non-associative flow
Fiore et al., 2007 BEM, POLY3D 3D Linear elastic
Stockmal et al., 2007 FEM 2D DruckerePrager with softening and viscous flow
Sanz et al., 2007 FEM, SPIN2D 2D Coulomb friction, elasticity and Matsuoka-Nakai
Wilkins, 2007 BEM, POLY3D 3D Linear elastic
González et al., 2008 FD, PARAVOZ/FLAC 2D MohreCoulomb, non-associative, no dilation
Maniatis and Hampel, 2008 FEM, ABAQUS 3D Elastic and viscoelastic
Sanz, 2008 FEM, SPIN2D 2D Coulomb friction, elasticity and Matsuoka-Nakai
Simpson, 2009 FEM 2D MohreCoulomb visco-elasto-plastic
Smart et al., 2009 FEM, ABAQUS 2D MohreCoulomb with non-associative flow
Resor and Flodin, 2010 FEM, ABAQUS 2D Linear elastic
Smart et al., 2010 FEM, ABAQUS 2D MohreCoulomb with non-associative flow
Simpson, 2011 FEM 2D MohreCoulomb with non-associative flow
Albertz and Lingrey, 2012 FEM, ELFEN 2D Critical State Model (SR3)
Albertz and Sanz, 2012 FEM, ELFEN 2D Critical State Model (SR3)
Nollet et al., 2012 FEM, ELFEN 2D Critical State Model (SR3)
Resor and Pollard, 2012 BEM, TWODD 2D Linear elastic
Smart et al., 2012 FEM, ABAQUS 2D MohreCoulomb with non-associative flow
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of the explicit formulation is that it employs a very simple solution
algorithm. The major drawback of the explicit formulation is the
restriction to keep the time-steps small (i.e, to divide themodel run
into a large number of calculation time-steps) to assure that the
solution is numerically stable. FLAC overcomes this drawback to
some extent by utilizing automatic inertia scaling and automatic
damping. Examples of the use of finite difference method in solving
structural problems can be found in Poliakov et al. (1993), Strayer
and Hudleston (1997), Upton (1998); Gerbault et al. (1998), Niño
et al. (1998); Erickson et al. (2001), Strayer et al. (2004), Sheldon
et al. (2006), González et al. (2008), and Gerya (2010).

The boundary element technique differs from the other con-
tinuum methods in that only certain “boundaries” within the
model are gridded (e.g., Thomas, 1993). Typically, these key
boundaries are the faults within a model, not the physical edges of
the model (Fig. 2). The rest of the model consists of a virtual box
surrounding the faults. The box is set up to apply stresses in both
the horizontal and vertical directions, and the azimuth of these
applied loads can be easily varied. A solution is computed at the
boundaries within the model, which can then be propagated to any
point or surface within the interior of the virtual box. These models
are restricted to using linear elasticity as the material model and
small deformation analysis for the kinematics because the method
solves an exact linear solution of the governing partial differential
equations (Brebbia and Dominguez, 1989). This constraint greatly
reduces the time it takes to run a model, by decreasing the number



Fig. 2. An example boundary element model showing that the faults are the only meshed regions within the model. The initial solution is calculated on this mesh. The dotted
surface represents a stratigraphic horizon that provides a set of loci for propagating the calculated values away from the fault mesh, but does not participate in the calculated
solution. The edges of the dotted surface roughly coincide with the lateral edges of the ‘virtual box’ described in the text. The top and base of this box coincide essentially with the
top and bottom edges of the faults. From Maerten et al. (2002).
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of time-steps required to achieve a solution. This type of problem is
well suited to modeling the elastic interactions (i.e. stress patterns)
between faults or other discontinuities within a medium, as long as
strains remain relatively small. The use of the boundary element
technique in structural geology has been popularized largely
through the work of Thomas (1993), Cooke and Pollard (1997),
Savage and Cooke (2003, 2004), Maerten, et al. (2006), Hilley
(et al., 2010), and the Stanford Rock Fracture Project through the
development of the Poly 3D program.

2.2. Particle dynamics

Particle dynamics techniques define another modeling
approach that is becoming increasingly used for simulating the
evolution of geologic structures (e.g., Saltzer and Pollard, 1992;
Burbridge and Braun, 2002; Strayer and Suppe, 2002; Finch et al.,
2004; Cardozo et al., 2005) (Fig. 3). The broad class of particle dy-
namic techniques includes the discrete element method (Cundall
and Strack, 1979), lattice-solid method, (Mora and Place, 1993),
and the contact dynamics method, (Radjaï and Dubois, 2011). Par-
ticle dynamics techniques were adapted from molecular dynamics
and utilize particles rather than mesh elements (Allen and
Tildesley, 1987; Walton, 1984; Place and Mora, 1999). Thus, these
techniques fall into a class referred to as “mesh-free numerical
methods” (Li and Liu, 2004). The particles are distinct from one
another, and a continuum of properties between particles is not
required. Each particle is assigned material properties (e.g., size,
density, elastic moduli, etc.) and inter-particle properties (e.g.,
friction, various bond properties such as shear and tensile
strengths, etc.) (Fig. 3). Particle interactions and resultant forces are
calculated and updated in a pairwise fashion throughout the
simulation. Particle accelerations, velocities, and displacements are
calculated for each system state using Newton’s first equation of
motion. Particles can be circular (in 2D), cylindrical or spherical (in
3D), or other shapes (elliptical, angular, superquadrics) (e.g.,
Rothenburg and Bathurst, 1992; Ting et al., 1993; Lin and Ng, 1997;
Cundall, 1971; Hart et al., 1988; Williams and Pentland, 1991), but
circles and spheres allow for the simplest contact detection
(Cundall and Strack, 1979; PFC2D, 1999; Allen and Tildesley, 1987).
The overall behavior of the system is determined by the interpar-
ticle force-displacement laws, which can include hard-sphere, soft-
sphere, non-linear attractive-repulsive laws, among others (Allen
and Tildesley, 1987; Li and Liu, 2004). One attraction of using
distinct particles is that discontinuities can initiate and evolve
naturally during a model run (so-called emergent behavior). Also,
particle displacements and associated strains are unlimited,
because mesh distortion is not an issue. And although particle
properties and interactions are distinct, it is possible to calculate a
composite continuum for any volume for comparison with natural
materials (Cundall and Strack, 1983; Thornton and Barnes, 1986;
Oda and Iwashita, 1999; Morgan and McGovern, 2005b).

The discrete nature of particle dynamics methods also poses
unique challenges. One issue is the computational effort required to
track all particles and their multiple interactions. This concern
typically limits the size of simulations, and therefore the resolution
of many modeled systems, as computational effort (and time)
scales approximately linearly with the number of particles. This
issue has been largely overcome, however, through efficient
bookkeeping schemes and the development of parallel computa-
tional methods (e.g., Plimpton, 1995; Plimpton and Hendrickson,
1996; Munjiza, 2004). A second issue, like with the finite differ-
ence method, is the small time-steps required to maintain system
stability. The critical time-step for particle translation is propor-
tional to the square root of the ratio of particle mass to particle
stiffness, (Cundall and Strack, 1979; Walton, 1984; Oda and
Iwashita, 1999; PFC2D, 1999). Thus, the dynamics of the smallest
particle in the system greatly influences model run-time. The size
of the simulation time-step also depends on expected particle ve-
locities, because displacements are integrated linearly. Time-steps
must be chosen to ensure that particle displacements are small
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enough for all incremental interparticle forces to be detected,
otherwise instability can occur. This imposes a more fundamental
limit on time-step size that cannot be overcome via advances in
computational speed.

Another fundamental challenge for particle dynamics models is
the need to constrain independently the bulk constitutive proper-
ties of an assemblage, as these are not defined a priori as for con-
tinuum models. The overall behavior of the system is determined
by the aggregate effects of all interparticle interactions, which
depend on the myriad of properties noted above. Proper imple-
mentation of particle dynamicsmethods, therefore, requires careful
characterization of the bulk material properties, including me-
chanical strength, elastic moduli, contractive/dilative behavior, and
more, under a range of stress paths and strain histories. These bulk
properties should also be related and tuned to natural materials to
the degree possible. Approaches and examples used to address this
need are discussed further below.

The application of particle dynamics-type modeling to
contractional geologic systems has a relatively short history, and is
still undergoing substantial development. The initial application of
particle dynamics modeling (using disks or spheres) to geo-
materials was in soil mechanics (Cundall and Strack, 1979) and
granular flow (Walton, 1984), but the approach proved to be useful
for examining a variety of geologic processes ranging from the
deformation of fault gouge (Morgan and Boettcher, 1999; Aharonov
and Sparks, 2004; Guo and Morgan, 2006, 2007; Abe and Mair,
2005), clay smear (Egholm et al., 2008), volcanic spreading (e.g.,
Morgan and McGovern, 2005a;b; McGovern and Morgan, 2009),
caldera collapse (Hardy, 2008), and extension, contraction, and
indentation (e.g., Yamada and Matsuoka, 2005). Recent simulations
of contractional systems demonstrate the potential of this method
for forward mechanical modeling of complex tectonic systems. For
example, Naylor et al. (2005) carried out 2D simulations of doubly
vergent wedges. Hardy et al. (2009) examined the detailed pro-
cesses of fault initiation and linkage within doubly vergent wedges.
Miyakawa et al. (2010) investigated the effects of spatially varying
friction on formation of the out-of-sequence faults and accre-
tionary wedge slope breaks. These detailed investigations build
upon a series of earlier studies that introduced the capabilities of
the method for large-scale geodynamic modeling as well as study
of discrete structures (e.g., Vietor, 2003; Burbridge and Braun,
2002; Finch et al., 2004; Strayer and Suppe, 2002; Strayer et al.,
2004; Cardozo et al., 2005; Benesh et al., 2007).

One appealing aspect of particle dynamics modeling is that the
discrete nature of the particular assemblage effectively reproduces
the phenomenology of natural or laboratory systems, which are
also composed of discrete or breakable materials. For example,
specific configurations and load paths can be generated to repro-
duce all of the constitutive behaviors reviewed below (e.g., elas-
ticity, plasticity, etc.), and the accompanying changes in volume.
Thus, particle dynamics models can provide unique insights into
the micromechanics associated with these observed behaviors
(Trent et al., 1987; Morgan and Boettcher, 1999; Morgan, 1999,
2004; Aharonov and Sparks, 2004; Potyondy and Cundall, 2004),
whereas this is not possible when the constitutive behavior is a
model input.

Many of the limitations of all the techniques discussed in this
paper are constrained by our ability tomakemillions of calculations
in a rapid manner. More complex behaviors will be achievable at
larger and larger scales as computing power continues to rise.
3. Constitutive laws for mechanical models

Constitutive models of geologic materials are equations that
relate the stresses that arise in the model to the resulting defor-
mation of the body. The stressestrain behavior of natural geologic
materials is complex and dependent on the loading path, and the
most advanced constitutive laws retain and reflect the strain his-
tory of the materials in all parts of the model (e.g., Crook et al.,
2006a, b; Albertz and Sanz, 2012). Sedimentary rocks, in partic-
ular, can undergo spectacular increases in strength as they age,
largely due to a decreasing volume during consolidation (tracked
by porosity), but also due to physical and chemical changes
(diagenesis) (e.g., Jones and Addis, 1986; Jones, 1994; Karig and
Morgan, 1994; Albertz and Sanz, 2012). Overall, rocks are discon-
tinuous, anisotropic, and inelastic, giving rise to complex and non-
linear behavior (Harrison and Hudson, 2000; Jaeger et al., 2007). A
great variety of continuum- and particle-based constitutive models
are commonly employed for geologic materials. In the following
section, some of the most useful and commonly applied constitu-
tive models are described together with their limitations.
3.1. Linear elasticity

The simplest constitutive relationship commonly used in nu-
merical modeling is linear elasticity. This relationship is based upon
Hooke’s law, which for a simple spring can be written:

F ¼ kx

An applied force (F), compresses the spring a distance (x) based
upon the value of the spring constant (k). The spring returns to its
initial state when the force is removed, therefore all strain accu-
mulated is reversible, or recoverable. There is no ‘memory’ of the
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strain history, nor is there a failure criterion. Linear elasticity is
employed in some 2D and all 3D structural restoration software
(e.g., Maerten and Maerten, 2006; Guzofski et al., 2009). This
property allows programs such as Dynel and Kine-3D to easily map
results between the restored and deformed states (Maerten and
Maerten, 2006; Guzofski et al., 2009; Durand-Riard et al., 2013),
which is a key benefit of these analyses. Linear elastic behavior is
also integral to the boundary element technique. The use of elas-
ticity in this technique facilitates the ease of calculation, which
Fig. 5. The basic features of a critical state material model, showing the complex, non-
linear behavior of geologic materials. p is the effective mean stress, and q is the
deviatoric stress. Pc is the preconsolidation pressure. The ellipsoidal curves starting at
the origin are failure envelopes. The critical state line divides regions of differing
failure regimes. Right of this line, failure is compactional, and results in decreasing
porosity and strengthening of the material. Left of this line, failure is dilational and
weakens the material. If a rock experiences stress trajectory (a), it will hit the smaller
failure envelope in the hardening part of the curve. This will result in compactive
failure (strengthening), which will move the envelope outward. If this stronger rock is
then subjected to stress trajectory (b), it will hit the outer failure envelope on the
dilational part of the curve. The material will weaken, and the stresses will drop along
the steep short downward trajectory until the stresses hit the critical state line. If the
stress path continues to reside at failure, the envelope will continue to shrink. If the
deviatoric stress drops, however, then the failure envelope in this example will have
shrunk back to its original, smaller size. Diagenesis (cementation) also strengthens the
rock and works to move the failure envelope outward. The intersection of the failure
envelope with the origin reflects that this material has no cohesion or tensile strength.
allows quick testing of many scenarios (e.g., Shamir and Eyal, 1995;
Brebbia and Dominguez, 1989; Melosh and Williams, 1989;
Willemse et al., 1996; Cooke and Pollard, 1997; Cooke et al., 2000;
Resor and Flodin, 2010; Resor and Pollard, 2012). The major
drawback of using this material behavior is that geological struc-
tures are mostly the result of permanent, non-recoverable (i.e.,
inelastic) deformation. A second drawback is the lack of a failure
criterion so there is no limit to the stresses that can arise during
deformation. Even so, elasticity will provide an approximation for
basic, low-strain problems in structural geology. Elastic-based
models may even be able to capture the strain field for large
deformation problems with the appropriate displacement bound-
ary conditions.

3.2. Plasticity

Materials for which a permanent deformation remains after
loading and unloading are called plastic materials (Hill, 1950). Many
materials exhibit an elastic behavior up to their yield stress, and
undergo plastic deformation when loaded beyond the yield stress,
and are thus called elasto-plastic materials. As described in more
detail below, geologic materials are often modeled with pressure-
sensitive elasto-plastic rate-independent material laws (e.g.,
Mandl, 1990), as this type of material model is capable of capturing
four fundamental behaviors: (i) recoverable elastic strain (ii) in-
elastic strain upon yield (iii) cohesive-frictional strength dependent
on loading path, and (iv) stiffness deterioration during plastic
deformation. This combination of behaviors captures the essence of
rock deformation (Jaeger et al., 2007), and is a good approximation
for many geologic applications.

Mathematically, plasticity models have three major ingredients:
(1) a yield function or criterion for the onset of inelastic deforma-
tion, (2) a flow rule and plastic potential function to determine the
plastic strain rate, and (3) a hardening/softening law that governs
the evolution of the yield function. The general characteristics of
the yield function can be appreciated by its cross-sectional shape
on a deviatoric plane (Fig. 4) and by its trace on a meridian or peq
plane (Figs. 5 and 6). The peq plane highlights the variable yield
stress as a function of the mean effective stress. The deviatoric
plane is perpendicular to the isotropic line (p-axis) and to any
meridian plane.

The flow rule for a material is governed by a property called the
plastic potential. The plastic potential is a curving surface, and can
be superimposed over the failure surface, as in Fig. 7. If the plastic
potential surface is parallel to the failure envelope at the point of
failure, then the flow rule is called associative. If they are not par-
allel, then the flow rules are called non-associative. Associative and
non-associative plastic flow rules are employed to help mimic the
behavior of geologic materials (Erickson and Jamison, 1995;
Sheldon et al., 2006; Mäkel and Walters, 1993; Poliakov et al.,
1993; Strayer et al., 2004; Cardozo et al., 2003; Crook et al.,
2006a; Albertz and Sanz, 2012). An associative behavior over-
predicts dilatancy during shear failure (Drucker and Prager, 1952;
Bolton, 1986; Goodman, 1989) and therefore is generally not
appropriate for most geo-materials. It can be a reasonable
approximation for the deformation of geologic materials under-
going plastic compaction, however. Non-associative flow rules
provide more flexibility to capture the inelastic volume change
(dilative or compactive) during different plastic loading (shearing
or compaction).

3.2.1. MohreCoulomb
Most geologists are familiar with the MohreCoulomb failure

criterion. This model, first proposed as a method to predict soil
strength for engineering purposes (Coulomb, 1773), defines the



Fig. 6. Representative stress paths and yield surfaces for natural sediments and rocks, based on the critical state model (Muir Wood, 1990). (A) Three dimensional yield surface
plotted in p’-q-e space, showing the strong dependence of rock strength on void ratio (or porosity). Three stress paths are shown: (1) uniaxial consolidation, which results in
progressive compaction at decreasing rates with increasing p’; (2) compactive shear loading following uniaxial consolidation, to the point of ductile failure (critical state); (3)
dilative shear loading from no differential stress (i.e., overconsolidated state), accommodated by elastic deformation to brittle failure, followed by strain softening to residual
frictional sliding (at critical state) along the fracture. (B) Changes in void ratio (volume) for the three stress paths. (C) Projections of stress paths in p’-q space, showing yield surface
for given void ratio section. (D) Typical differential stressestrain plots for given stress paths, showing (1) progressive strain hardening, (2) compactive shear deformation to residual
strength, and (3) dilative shear deformation to residual strength.
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shear strength of a material as a linear function of the effective
normal stress acting on the failure surface (Fig. 7):

sf ¼ cþ sn tan f;

where sf is the shear strength, c is the cohesion, sn is the effective
normal stress on the shear plane, and f is the friction angle (Mohr,
1900, 1914).
MohreCoulomb is a classical plasticity model that accounts for
the shape of the failure surface on the deviatoric plane. It is widely
used for representing the yield and failure behavior of cohesive-
frictional materials. This model has the shape of an irregular
hexagon on the deviatoric plane (Fig. 4) and predicts a higher yield/
failure strength in compression than in extension as observed in
geomaterials (Fig. 7). On a meridian plane as in Fig. 7, the shape of
the yield/failure criterion is a straight line for a constant value of the



Fig. 7. Basic elements of the Mohr circle (Mohr, 1900, 1914). Normal stress (sn) and
shear stress (t) are plotted on the x- and y-axes, respectively. s1 and s3 are the mini-
mum and maximum principle stresses. Phi is the slope of the failure surface, also
known as the angle of internal friction, C is the cohesion and To is the tensile strength.
The failure envelope, from To through C and along phi, is the combined Coulomb-
Griffith failure criterion. When stress conditions cause the Mohr circle to become
tangent to the Coulomb failure criterion, an additional parameter, the plastic potential
function, can be defined. This function describes the flow behavior after failure. In this
case, the plastic potential function and the failure surface are not parallel, so the flow
law is termed non-associated. If the two were parallel, the flow law would be asso-
ciated. The horizontal plastic potential surface defines flow along the direction of the
arrow, resulting in isochoric, or constant volume deformation. If the plastic potential
were parallel to the failure criterion, and the arrow were to have a negative slope in
tau-sigma space, deformational flow would be highly dilational.
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friction angle, which may not be realistic for some cohesive-
frictional materials. This failure criterion has been equipped with
different flow rules and hardening/softening laws to model the
evolution of geologic structures (Griffith,1921; Poliakov et al., 1993;
Strayer and Hudleston, 1997; Upton, 1998; Gerbault et al., 1998;
Beekman et al., 2000; Strayer et al., 2004; Guiton et al., 2003a;
Wissing and Pfiffner, 2003; González et al., 2008; Simpson, 2009;
Smart et al., 2009).

The appeal of the MohreCoulomb description is that it is a
simple formulation, it predicts a limit to material strength based on
applied stresses, and it provides geometric constraints for the
failure planes. The main weakness of the MohreCoulomb model,
compared to more sophisticated constitutive laws, is its inability to
capture compactive plastic deformation (Potts and Zdravkovic,
1999). MohreCoulomb behavior is relatively easy to implement
numerically for two-dimensional loading conditions. The corners
within the yield surface in three dimensions, however, make it less
straightforward to implement, as discussed below. Moreover, these
models do not account for the influence of the intermediate prin-
cipal stress, which could be significant for some rocks (Mogi, 1967;
Colmenares and Zoback, 2002; Morris and Ferrill, 2009). Thorough
Fig. 8. Basic elements of the modified DruckerePrager constitutive model in peq
space. The shear failure line, Fs, with angle b is directly analogous to the friction angle
in the MohreCoulomb model. The key differences in this implementation is the
addition of an end cap, Fp, that allows for compactive failure, and provision for both
tensile strength (failure surface left of y axis) and cohesion (d). Modified from Abaqus
6.11 User Documentation (2012).
reviews of the MohreCoulomb law can be found in many sources,
including Timoshenko and Goodier (1970), Parry (2004), and Jaeger
et al. (2007).

3.2.2. DruckerePrager
Drucker and Prager (1952) proposed a pressure-dependent

plasticity failure criterion similar to MohreCoulomb. This two-
invariant failure criterion, written in terms of the deviatoric and
mean effective stresses is:

q ¼ aþ bp

where q is the deviatoric stress, p is the effective mean stress, and a
and b are cohesion-like and friction-like material constants.

The original DruckerePrager model was developed to capture
shear failure, therefore is also poorly suited to accommodate
compactive failure (Jaeger et al., 2007). The original two-invariant
DruckerePrager model also did not capture the higher yield/fail-
ure strength in compression than in extension as observed in most
geologic materials. An advantage of the DruckerePrager model is
that the two-invariant yield surface plots as a smooth circular cone
centered on the isotropic line in principal stress space, as opposed
to the angular yield surface for MohreCoulomb (Fig. 4). This single
smooth function of the stresses is differentiable everywhere due to
the absence of corners. The DruckerePrager model has been
modified to add an ‘end cap’ to better represent compactive plastic
deformation (Drucker et al., 1957) and the failure surface has been
moved to include cohesive and tensile behavior (Fig. 8). In this
enhanced implementation, DruckerePrager model is transitional
between Mohr Coulomb and critical state soil mechanics-type
material descriptions presented below, and has been featured in
several structural modeling studies (e. g., Mäkel and Walters, 1993;
Erickson and Jamison,1995; Barnichon and Charlier,1996; Erickson,
1993; Niño et al., 1998; Vanbrabant et al., 1999; Schultz-Ela, 2002;
Cardozo et al., 2003; Stockmal et al., 2007).

3.2.3. Critical state theory
Critical state models were originally developed for cohesionless

soils (Roscoe et al., 1958; Schofield and Wroth, 1968) but have been
also applied to concrete (Chen, 1982) and rocks (Gerogiannopoulos
and Brown, 1978). Critical state theory considers that granular
media, when continuously sheared, reach a state in which shearing
occurs without changes in differential stresses, or volume and
porosity. Critical state theory is defined in terms of effective mean
stress (p), differential stress (q), and porosity or void ratio (e), which
captures volumetric changes (Muir Wood, 1990). Two-dimensional
depictions of critical-state yield criteria are shown in Figs. 5 and 6,
highlighting the interdependence of mean and differential stress.
Fig. 6 conveys a generalized three-dimensional yield surface and
representative stress paths within that surface. The different
components of the critical state model provide descriptions for a
much wider range of material behaviors, including cohesiveefric-
tional strength, compaction, dilatancy, strain hardeningesoftening,
and non-associative plastic flow (see also Atkinson and Bransby,
1978; Muir Wood, 1990). Each behavior is predicted by where the
stress path intersects the failure surface (Figs. 5 and 6).

The original critical state models do not capture the cohesive
and tensile behavior observed in cemented soils and rocks (Fig. 5).
In addition, the yield criterion is often described using a two-
invariant formulation like the basic DruckerePrager model. Crit-
ical state models have been refined by extending the yield surface
into the tensile region and by introducing an asymmetric yield
surface that more closely approximates experimentally determined
failure characteristics (Crook et al., 2006a). Several recent articles
present aspects of these modified critical state models for forward
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Fig. 9. Quantifying bulk mechanical properties for simulated particle dynamics materials. (A) Differential stress vs. strain plotted for a biaxial particle dynamics sample confined at
10 MPa, shows elastic loading to peak strength at failure, followed by irregular strain softening to residual strength associated with frictional sliding. (B) Snapshot of sample tested
in (A), showing distribution of force chains which transmit stresses across the sample. The rupture zone is characterized by tensile bonds (red) and high compressional force
unbonded contacts (black) that accommodate frictional sliding.
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numerical modeling (e. g., Crook et al., 2006a, b; Albertz and
Lingrey, 2012; Nollet et al., 2012). None of the above constitutive
models accommodate anisotropic and/or rate-dependent (i.e.
viscous, like salt) behavior that could be relevant for predicting in-
situ stresses and deformation in some situations (Amadei, 1996;
Day Lewis, 2007).
3.3. Damage mechanics

Damage mechanics is another powerful continuum-based
constitutive formulation that is optimized to capture strain locali-
zation and softening behavior observed in brittle and quasi-brittle
geologic materials. Damage mechanics models have been used
extensively in fatigue analysis of metals, and to model evolution
and progressive localization of deformation of rocks at the lab-scale
(e.g., Busetti et al., 2012a; Gueguen and Besuelle, 2007; Ashby and
Sammis, 1990). Damage mechanics has also recently been used to
investigate problems such as the initiation of hydraulic fractures
(Smart et al., 2012; Busetti et al., 2012b) and lithospheric scale
deformation processes Karrech et al. (2011). To date, however,
damage mechanics models have not seen significant use in
modeling geologic structures at the scale of interest in this paper.
3.4. Constitutive properties for particle dynamics methods

Constitutive laws for particle dynamics simulations are not
defined a priori in the same way as the continuum methods.
Instead, the constitutive relationships depend on the assigned
particle properties and interparticle interaction laws. However, the
constitutive behaviors described above generally can be repro-
duced within particle assemblages using “soft-sphere” interparticle
interactions. In fact, critical state, stress-dependent elasto-plastic
behavior with hardening and strain softening responses are a
natural outgrowth of the particulate nature of the model material.
These behaviors reflect the changes in granular packing and dilat-
ancy that accompany consolidation and shear (Mandl, 1988; Muir
Wood, 1990; Marone et al., 1990).
A full specification of the constitutive behavior of simulated
particle dynamics materials has not yet been carried out, although
various characterization studies were conducted under specific
loading paths, e.g., granular shear (Morgan, 1999, 2004), and
MohreCoulomb failure criterion (e.g., Potyondy and Cundall, 2004;
Dean et al., 2013), to address specific applications. As a demon-
stration, a biaxial test conducted on a confined cohesive particle
assemblage (Fig. 9) exhibits elastic strain during initial axial
loading, until reaching a peak strength, at which point discrete
bonds begin to break, causing progressive strain softening until a
through-going fracture develops. Similar simulations of this nu-
merical material under different stress paths and loading condi-
tions would more fully constrain the three-dimensional yield
surface of such particle dynamics materials.

Given the large number of parameters that can influence the
bulk behavior of the particle dynamics assemblages, model appli-
cations must focus on the effects of a few key parameters. The
general objective of such modeling is to probe a range of parameter
space to understand how these variables influence the final struc-
tural geometries and the mechanical evolution of the system. Such
efforts provide valuable insights into how natural systems evolve,
and the range of properties that may have existed at the time of
deformation (Saltzer and Pollard, 1992; Morgan and Boettcher,
1999; Morgan, 1999; McGovern and Morgan, 2009).

One approach to overcome the lack of certainty about the
constitutive response of discrete materials is referred to as SDEM
(Egholm, 2007; Egholm et al., 2007). This strategy assigns consti-
tutive properties in advance (i.e., MohreCoulomb parameters), and
then fine-tunes the interparticle stresses to attain the desired
continuum stresses. Such a hybrid approach offers more exact
matching of desired constitutive properties, while retaining the
ability for discontinuities to form and evolve that can arise in
discrete systems. However, this approach is not appropriate for
systems with complex, time-, space-, or stress-dependent consti-
tutive behaviors, and loses some of the opportunities to gain in-
sights into the micromechanics of deformation.

Commonly, the most internally consistent way to select appro-
priate particle and inter-particle properties for tectonic-scale
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particle dynamics simulations is to match the characteristic ge-
ometries of the modeled systems with other observational data,
e.g., of a small part of the system. In this way, particle properties can
be iteratively modified until the right geometry is obtained.
Nonetheless, the bulk constitutive properties for the chosen parti-
cle properties should be quantified and compared to predictions for
natural materials. These tuned properties then can be used to
simulate larger systems to examine regional stress conditions and
tectonic evolution (Hardy et al., 2009; McGovern and Morgan,
2009).

4. Numerical modeling considerations

4.1. Model resolution

If the numerical tools and available constitutive laws suit the
desired objective, one can set up one or more numerical modeling
exercises. Several issues need to be addressed in preparation for
such exercises. The first consideration for structural modeling is
model resolution. A basic tenet of numerical modeling is that
processes that are inherently discontinuous at a small scale can be
modeled as a continuum when viewed at large enough scale
(Munjiza, 2004). The difficulty for the modeler is determining
which geological formations, properties and features can be safely
combined or averaged andwhich must be specified explicitly in the
model. Typically, this is achieved through trial and error (i.e.,
sensitivity studies) to determine if the included properties produce
the expected behavior or geometries. Practically speaking, the el-
ements or particles in these models need to be at least one-half to
one-third the size of the features expected to be resolved. This
constraint can result in a large number of calculations for each step
in the model, leading to long run times. As noted above, run times
scale nearly linearly with the number of elements or particles. Thus,
halving the element or particle size for a given 2D domain size
increases the number of calculations by a factor ofw4, quadrupling
the CPU time required for a given time-step. For large and complex
models, particularly in 3D, this can slow down run times to unac-
ceptable levels, and highlights the inherent struggle between
model resolution and run time.

4.2. Discontinuities

The way faults and discontinuities are represented in these
numerical models can also be an issue. Faults are narrow zones of
intense shear deformation, which develop through a progressive
change from distributed deformation to highly localized strain and
associated softening (or strength deterioration) of the materials
involved. Mechanically, they represent a strength discontinuity
within themodel, and thematerial properties of the rocks on either
side of the fault may remain similar or may also be discontinuous.
The first question for the modeler is whether to pre-define faults in
the model, or to have them emergewhen and where the conditions
dictate. The answer to this question will almost dictate the type of
modeling. Pre-defined faults are almost a necessity in continuum
models, although pre-defined faults cannot be inserted in Arbitrary
Lagrangian Eulerian-type continuum models. In contrast, the
emergent behavior of discontinuities in particle dynamics facili-
tates modeling the conditions responsible for the onset of faulting.
It is possible to pre-define zones of weakness or heterogeneity that
localize faulting in particle dynamics models, although it is gener-
ally unnecessary to do so.

The process of fault initiation and strain localization inmaterials
is described most completely by fracture mechanics theory,
through the linkage of microscopic cracks and other heterogene-
ities (Reches and Lockner, 1994; Moore and Lockner, 1995). It is
generally impractical to track this process within the large domains
of interest here. Fortunately, the initiation and orientation of faults
is well predicted by elasto-plastic constitutive models based on the
bulk material properties (Jaeger et al., 2007). However, the transi-
tion from a cohesive strength condition to frictional sliding on a
newly formed fault is not well defined. The chosen rate of strength
evolution will play a big role in how rapidly and completely strain
localizes onto a modeled fault zone. This evolution is prescribed as
part of the constitutive behavior for the continuum models, but
emerges as a function of imposed particle and bond properties in
the particle dynamics models, which must be tuned to obtain the
desired result. A secondary concern is the demonstrated depen-
dence of fault friction on slip velocity, maturity of contact, rock-
mass stiffness, and temperature (e.g., Dieterich, 1972, 1979;
Scholz, 1990; Marone et al., 1990; Beeler et al., 1996). However,
most large-scale particle-based models avoid these issues by
running in a quasi-static mode, using time-steps small enough to
minimize the inertia of the system.

Many strategies also have been developed to modify or enhance
the finite element method to capture discontinuities and intense
shearing along faults or shear bands. These approaches include: (a)
adaptive mesh refinement (e.g., Ortiz and Quigley, 1991; Crook
et al., 2006a; Albertz and Sanz, 2012; Nollet et al., 2012), (b) the
Arbitrary LagrangianeEulerian formulation (ALE) (e.g., Hirt et al.,
1974; Fullsack, 1995; Wissing and Pfiffner, 2003; Stockmal et al.,
2007; Ellis et al., 2004; Simpson, 2006; Ings and Beaumont,
2009), (c) contact mechanics (Laursen, 2002; Wriggers, 2002;
Niño et al., 1998; Sanz et al., 2007, 2008; Griffith et al., 2009), (d)
the embedded discontinuity approach (e.g., Regueiro and Borja,
1999; Borja et al., 2000), (e) the extended finite element method
(e.g., Dolbow et al., 2001; Liu and Borja, 2009), and (f) the iso-
geometric finite element method (e.g., Benson et al., 2010;
Verhoosel et al., 2010).

The most used techniques in structural geologic modeling are
adaptive mesh refinement, the ALE approach, and contact me-
chanics. Techniques (a) and (b) are used to model the initiation and
development of new faults, and (c) is used to capture the behavior
of pre-existing faults and to better constrain boundary models. All
of these approaches entail some form of regularization to charac-
terize the thickness of the fault. Regularization is strategy to
normalize fault zone thickness to element size, in order to mini-
mize the effects of element size on the resulting pattern of defor-
mation. In the contact mechanics approach, the thickness of the
fault or sliding interface is assumed to be zero and therefore the
displacement field is discontinuous across the slip surface. This
approach has a disadvantage over (a) and (b) in that the fault ge-
ometrymust be predefined and does not emerge naturally from the
model. In the adaptive remeshing approach, the mesh is re-defined
when elements become distorted beyond pre-set tolerances. The
ALE approach uses two superimposed meshes. An Eulerian mesh
remains fixed and orthogonal, and is relied upon for the calcula-
tions, while a second Lagrangian mesh is allowed to undergo quite
extreme changes in shape.

4.3. Boundary conditions and gravity loading

Finally, once the geometry of the model domain is designed, and
the layers are populated with the appropriate mechanical proper-
ties, the modeler has to define the conditions that will drive
deformation. Typically, prescribed boundary displacements are
employed, forcing deformation into the rest of the domain (e.g.,
Albertz and Lingrey, 2012). The boundary may be considered an
integral part of the domain, maintaining coherence and moving in
tandem with the rest of the system. Alternatively, the boundary
may approximate some far-field displacement field, in which case



Fig. 10. An example of finite element models demonstrating the main capability of testing different sensitivities. In this example, the configuration and boundary conditions of the
models were held constant, only the material model was varied. In sequence A, the colored layers are all normally-consolidated sandstone. In sequence B, all the colored layers are
normally-consolidated shale. In sequence C, the yellow layers are sandstone, while the dark gray layers are shale. These types of models are very good at demonstrating changes in
deformation style that accompany different starting conditions. It is difficult, however, to make models like this match specific examples observed in nature. Modified from Albertz
and Lingrey (2012).
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the model should be free to deform against the boundary, for
example by introducing frictionless contact between the model
materials and the boundary (e.g., Sanz et al., 2008). An alternative
boundary condition relies on prescribed forces rather than dis-
placements; however, given the tendency for modeled materials to
undergo changes in strength during deformation, force-controlled
boundary conditions tend to be less stable, and unpredictable.
Gravity plays a significant role in the overall stress history of large
geologic systems, and should be included, especially if absolute
stress conditions during deformation are important. Gravity can be
expressly included, or an effective gravity load can be imposed,
depending upon how a model is set up. Scaling of the model can
also be an issue in this regard. For example, a model constructed to
mimic a scaled sandbox experiment may behave very differently
when re-scaled to model a mountain belt or accretionary wedge.
5. Examples of finite element and particle dynamics models

A few representative examples of mechanical models are
included here as demonstrations of what can be gained using these
tools. The reader is guided to the many other published examples,
cited here and elsewhere, to explore the broader range of oppor-
tunities (Table 1)

Useful examples of the current state-of-the-art abilities of finite
elements for structural modeling are presented inAlbertz and Sanz
(2012)and Albertz and Lingrey (2012) (Fig. 10). This is a parametric
study of the interplay between mechanical stratigraphy in partic-
ular the strength of the overburden) and fault geometries on
resulting fold shapes in the deformed strata. The models were run
using the ELFEN software (Rockfield Software, Ltd., Swansea,
Wales). The model domain is 10 km thick by 36 kmwide. The upper
3 km represents a sedimentary overburden and the lower 7 km is
crystalline basement.

These models utilize a critical state-type constitutive law for the
material properties (Crook et al., 2006a, b). Many of the models
presented employ a homogenous material, although strength in-
creases with depth proportional to the weight of the overburden,
and expressed as an over-consolidation ratio. Expressing strength
as a ratio proportional to overburden is a convenient way to define
the strength of the materials. The strength can be easily increased
or decreased in subsequent model runs while preserving any
existing inter-layer heterogeneity. It is also an efficient way to
mimic the strengthening effects of diagenetic cementation.

The software in this example permits the insertion of sliding
contact surfaces as pre-defined faults, and also features an adaptive
remeshing capability to handle large strains within the mesh. The
mesh is re-formed during any time-step in which a pre-specified
strain limit is exceeded within any elements in the model. The
refined mesh elements also grow smaller, again following pre-set
limits. The net result is a controlled, progressive softening of re-
gions undergoing high strain that in turn localizes the deformation.
Thus, faults can terminate within the model, but a localized zone of
deformation will propagate into the model as displacement occurs
(Fig. 11). The structural features that emerge from these models are
very geological in appearance.

A demonstration of the potential of particle dynamics simula-
tions for the study of the kinematics and mechanics of tectonic-
scale contractional deformation is shown in Fig. 12. This example,
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using the discrete element modeling code RICEBAL (Morgan and
McGovern, 2005a; Dean et al., 2013) starts as a 120 km wide
cohesive assemblage deformed by pushing the back wall inward
above aweak decollement layer, located above the lower blue layer.
Interparticle friction is set to 0.3 within the domain and is activated
once the particle bonds break. By contrast, the decollement layer
has no interparticle friction to facilitate sliding. The particle dis-
placements and contact forces are recorded at every time-step
throughout the simulation, so that equivalent continuum strains
and stresses (or their invariants) can be calculated to analyze the
behavior of the system.

Slip is localized along the weak decollement horizon, which
drives deformation into the overlying domain. In this example,
uniformly spaced forethrusts develop above the decollement,
uplifting and folding the overlying strata to form a broadly tapered
wedge. Substantial distributed lateral compaction precedes and
accompanies thrusting, reflected in distributed blue domains in the
right-hand panels (Fig. 12). When failure (faulting) occurs, it is
accompanied by local dilation and strain softening, which favors
frictional slip on the new fault. Local dilation of the uplifted strata
also occurs as lateral confinement of thrust sheets decreases
Fig. 11. Model detail showing localization of deformation within a model processed by
the finite element code ELFEN�. The sharp offsets in the basement lithology, shown as
gray material on lower right, are accommodated in the software by recomputing the
mesh when distortion exceeds pre-set limits of internal strain. The thin, dark lines are
a material grid that starts as a rectilinear grid and deforms as the experiment pro-
gresses. Modified from Albertz and Lingrey (2012).
(Fig. 12). These compactive, dilative, and critical-state phenomena
demonstrate the ability of particle dynamics materials to reproduce
many aspects of critical state mechanics.

As noted above, particle dynamics simulations also allow us to
look into the mechanisms responsible for the observed deforma-
tion in fold and thrust belts, spanning the gap between discrete
analog models and continuum finite element models, providing
mechanical perspectives of discrete deformation processes that
cannot be observed any other way. The stress evolution during
deformation (and material stress paths if desired) can be mapped
by gridding the directional components of the stress tensor at
specific times during the simulation. Two scalar quantities, mean
stress (sm¼ [s1þ s3]/2), and differential stress (Ds¼ s1e s3), and
the orientation of the maximum compressive stress, (s1) are
derived and plotted to aid in the visualization of the stress tensor
field. A third quantity, referred to as failure potential, denotes the
proximity of the differential stress to the failure condition, and can
be tracked during deformation.

As an example, Fig. 13 examines the initiation and propagation
of a new thrust fault in front of an advancing thrust system. Initially,
mean stress is highest close to the back wall and differential stress
is greatest in the immediate footwall of the frontal thrust. This
stress state results in a zone of high failure potential above the
slipping decollement. As loading continues, a new thrust is formed
in the high stress region, transferring the mean stress forward and
releasing the differential stress above the newly formed fault. These
changes, in turn, decrease the failure potential throughout the
domain. The surrounding rocks return to an elastic loading path,
i.e., within the critical state yield surface, accommodating slip on
the new and pre-existing faults, until stress conditions in front of
the new fault approach failure and the process begins anew.

6. Comparative forward modeling

Comparative numerical modeling plays a valuable role in for-
ward modeling, particularly given the significant differences be-
tween various modeling approaches and assumptions, and the
need for independent validation of numerical results. This reali-
zation was the motivation behind comparative benchmark
modeling carried out by several different groups, using both con-
tinuum and particle dynamics approaches, as well as analogmodels
(e.g., Ellis et al., 2004; Buiter et al., 2006). Both contractional and
extensional systems were studied this way, with the models
showing greater variability between codes for the contractional
models. This type of comparative modeling effort serves to
demonstrate the difficulties of exactly matching model material
properties, as well as initial and boundary conditions, but can
highlight the robust features that characterize the formation of
thrust wedges (Buiter et al., 2006).

Finite element and particle dynamics simulations of the evolu-
tion of Sheep Mountain anticline, Bighorn basin, Wyoming have
been compared by Zhang et al., (2013). Identical model domains,
27 km long and 3.45 km tall, were constructed for the two simu-
lations. Nine stratigraphic layers with varying thicknesses and
mechanical properties were placed over the basement. The posi-
tions and offsets of three basement faults were prescribed, and
thesewere displaced into the overlying strata to form the structure.
The final results for one set of basement displacements are shown
in Fig. 14.

In both the finite element and particle dynamics model results,
the sedimentary strata are passively deformed by predefined
basement and side boundary displacements, which simulate the
process of basement uplift and folding. Regional compression is
applied by moving the right-hand wall to the left as the basement
deforms. Deformation in both models is imposed in four stages,



Fig. 12. Sequential snapshots of a contractional wedge simulation using the particle dynamics method, showing the development of evenly spaced imbricate thrust sheets in
response to the inward displacement of the left wall. Left panels show the particle configuration for five displacement increments. The decollement layer lies immediately above the
basal dark blue domain. The right panels show total volumetric strain (contraction is blue; dilation is red and yellow), demonstrating that distributed lateral compaction precedes
and accompanies thrusting. Dilation of the rotated strata (yellow colors) also occurs as lateral confinement of thrust sheets decreases during uplift of the thrust slices.
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similar to the hypothetical series of events proposed by Stanton and
Erslev (2002). Each stage employs constant predefined basal
displacement rates and corresponds to about 1 My, with resulting
basement and boundary configurations shown in Fig. 14.
Fig. 13. Derived stress quantities for the contractional particle dynamics simulation shown
with stress magnitude. Top panel: particle configuration; second panel: sm; third panel: Ds;
Image 118, pre-thrust: High sm occurs at depth within the wedge, close to the moving wall,
unusually high in footwall of frontal thrust. High failure potential occurs in the footwall whe
(b) Image 120, post-thrust: Propagation of the new forethrust within the footwall causes a d
stress has been transferred forward above the decollement fault.
There is a close overall match between the finite element and
particle dynamics results, although with some important differ-
ences. Overall, the thrust faults formed in the particle dynamics
simulations are slightly steeper than in the finite elementmodel, and
in Fig. 12 during a thrust initiation sequence. In each stress plot, color intensity scales
bottom panel: failure potential with overlay of s1 orientations (length scaled by sm). (a)
and decreases to the right. Ds is similarly high at depth beneath the wedge, but is also
re next thrust will form. Note blue stress potential on slope, reflecting tensile stresses.
ecrease in Ds and failure potential, although they remain high at depth where tectonic
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the particle dynamics model exhibits significantly more upper level
extension and fracturing. This extension is accommodated through
layer thinning in the finite element model. It appears that the dif-
ferences between the two models relate partially to the different
modes of deformation inherent to the type of model. The tensile
fractures (discontinuities) observed in the particle dynamics models
are more easily accommodated in discrete simulations, and also
reflect the modeled high cohesive strengths in these shallow ma-
terials. Reducing the cohesive strengths tended to result in surficial
flow of the shallower strata, inconsistent with the finite element
results. The bed thinning observed in the finite element models is
more typical of a continuum response for plastic materials. This
discrepancy may reflect different modeled rheologies for these
shallowmaterials. The differences in propagation rates of the various
faults also imply fundamental differences in the constitutive be-
haviors of the two models. Strain rates are less easily controlled in
particle dynamics simulations, compared to finite element models,
where they are prescribedwith the constitutive laws. In addition, the
steeper faults in the particle dynamics models suggest that the bulk
mechanical properties differ between the two models.

7. Comparison of geomechanical and geometric analysis
techniques

For nearly the past thirty years, much structural interpretation
has depended upon a purely geometrical ‘balancing’ approach that
uses the core assumptions of conservation of cross-sectional area
(i.e., volume) and bed length during deformation (Suppe, 1983;
Suppe and Medwedeff, 1990, and many others). These assump-
tions allow the derivation of systematic geometric rules that can be
Fig. 14. Comparative modeling of evolution of Sheep Mountain, Bighorn Basin, Wyoming (af
w1 my increments. Offset and changes in layer thickness and distortion of the tracking m
simulation at the same stages of deformation. Superimposed gray shading shows regions o
employed in cross section balancing analysis. While these types of
approaches can be very efficient and informative, they neglect the
mechanical aspects of rock deformation. For one, all rock types are
assumed to obey the same geometric rules, with the exception of
lithologies like salt and sometimes shale, which can experience
significant flowage. For flowing materials, only constant area is
required. This purely geometric approach leads to a variety of
misfits between the geometric analyses and real-world structures
(e.g. Cardozo et al., 2005). Some proposed modifications of the
original rules have been put forward to deal with these misfits,
including growth fault-bend folding (Medwedeff, 1989; Suppe
et al., 1992), shear fault bend folding (Mosar and Suppe, 1992;
Suppe et al., 2004) and tri-shear (Erslev, 1991; Hardy and Ford,
1997; Allmendinger, 1998) among others.

One specific source these misfits is the assumption of constant
area (volume) during deformation, which is not a constraint in the
earth, or for geomechanical models. A rock body can dilate,
compact, or shear as a function of its mechanical state and past
stress history. The mechanical properties in nature and in a nu-
merical model can also vary from layer to layer. Mechanical forward
models simultaneously satisfy the equilibrium differential equa-
tions, and the compatibility conditions for the kinematics, along
with phenomenological stressestrain relations for the rock layers,
so they are always in a mechanical ‘balance’. Careful geometric
analyses of controlled mechanical modeling results needs to be
carried out in the manner of Albertz and Lingrey (2012) and Benesh
et al. (2014) to assess the magnitude of errors that may arise from
the geometric simplifications. This assessment is something that is
now highly feasible, given the wealth of mechanical models of
contractional systems.
ter Zhang et al., 2013). Left panels: Sequential snapshots of finite element simulation at
esh denote deformation. Right panels: Sequential snapshots of the discrete element
f high distortion and shear strain.
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A point of caution is appropriate here. Despite all the so-
phistication of forward mechanical modeling today, it is difficult
and extremely time-consuming to create a forward model that
precisely matches the geometry of a specific structure. Mechan-
ical and geometric models serve very different purposes, and
each has its own unique benefits. Geometric/kinematic models,
especially the modified models, are adept at matching existing
structures, drawing upon knowledge of many other known ex-
amples. This capability is especially important when trying to
complete an interpretation on poorly-imaged seismic data. For-
ward mechanical models, with their sophisticated material de-
scriptions, boundary conditions, emergent behavior, and
predictive capabilities, provide key tests of the feasibility of these
final interpretations, or constraints on the properties of the
materials that compose them. In this way, the two techniques are
highly complementary, and both have a place in the structural
geologists’ toolbox.

8. Conclusions

Several key ingredients are required for modeling the evolution
of geologic structures. These ingredients include a solution method
for non-linear models, a framework for capturing localized defor-
mation or discontinuous displacement fields, a large-deformation
formulation, appropriate constitutive laws that capture the
salient features of rock behavior, and appropriate enhancements for
capturing strain softening in continuum methods without mesh/
particle size effects. These modeling techniques provide powerful
tools to test and verify geologic interpretations or hypotheses that
cannot be observed in nature or replicated in the lab due to the
scale and nature of these phenomena.

The finite element method is by far the most common and
useful of the continuum techniques. The integration scheme it
employs makes it appropriate for the widest variety of geologic
problems, and it can handle the most sophisticated constitutive
relationships. Early problems with strain incompatibility are eased
by several different strategies. The finite difference technique is the
oldest of the continuum methods, but is less adaptable to many
geologic problems. The boundary element method, due to its
simple formulation and efficient meshing, can solve 3D problems
with limited computational power.

Linear elasticity by itself is the least appropriate constitutive
relationship commonly used in geologic models. There is no failure
criterion, and it has a limited range of low-strain situations inwhich
it is applicable. Traditional MohreCoulomb and DruckerePrager
plasticity models are a significant improvement over pure elastic-
ity, but are inadequate if compactive yield behavior is important to
themodel results. Both laws have beenmodified towork inmodern
numerical simulation software, with DruckerePrager being a more
computationally friendly implementation. The most advanced
constitutive relationships presented here are critical-state models.
These can deal with significant complexities of behavior, including
softening and hardening of the same material, dependent upon the
stress paths experienced by the model.

Particle dynamics methods have also shown great applicability
to modeling the formation of geologic structures. While the
approach is different than finite elements, these techniques have
inherently critical-state-like behavior by virtue of their particulate
nature and the changes in granular packing that accompany shear
and consolidation. It is very difficult to specifically define, however,
the exact bulk stressestrain responses of the particle assemblages.
These techniques provide a straightforward way to examine the
mechanisms responsible for the observed deformation in contrac-
tional systems, and thus provide a unique window into the way
thrust systems work.
The current state-of-the-art in numerical modeling offers some
significant advances over geometric/kinematic modeling that takes
little account of the materials that are deformed to create a struc-
ture. Mechanically based forward models simultaneously satisfy
the equilibrium differential equations, the compatibility conditions
for the kinematics, along with phenomenological stressestrain
relations for rock behavior. Mechanical forward models are not a
replacement for geometric/kinematic analysis, however. It is not
possible to routinely create forward numerical models that will
match the geometry and details of a specific structure, except in
extremely simple cases. This limits the use of numerical models for
every-day type structural interpretation problems. However, for-
ward numerical models are well suited to probing some of the
fundamental questions regarding how structures form and evolve,
and in this role, are highly complementary to geometric models.
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